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Abstract

Modern warfare methods in the urban environment necessitates the use of mul-

tiple layers of sensors to manage the battle space. Hyperspectral imagers are one

possible sensor modality to provide remotely sensed images that can be converted

into Geographic Information Systems (GIS) layers. GIS layers abstract knowledge of

roads, buildings, and scene content and contain shape files that outline and highlight

scene features. Creating shape files is a labor-intensive and time-consuming process.

The availability of shape files that reflect the current configuration of an area of

interest significantly enhances Intelligence Preparation of the Battlespace (IPB).

The solution presented in this thesis is a novel process to automate the creation

of shape files by exploiting the spectral-spatial relationship of a hyperspectral image

cube. It is assumed that “a-priori” endmember spectra, a spectral database, or specific

scene knowledge is not available. The topological neighborhood of a Self Organizing

Map (SOM) is segmented and used as a spectral filter to produce six initial object

maps that are spatially processed with logical and morphological operations. A novel

road finding algorithm connects road segments under significantly tree-occluded road-

ways into a contiguous road network. The manual abstraction of GIS shape files is

improved into a semi-automated process. The resulting shape files are not suscepti-

ble to deviation from orthorectified imagery as they are produced directly from the

hyperspectral imagery.

The results are eight separate high-quality GIS layers (Vegetation, Non-Tree

Vegetation, Trees, Fields, Buildings, Major Buildings, Roadways, and Parking Areas)

that follow the terrain of the hyperspectral image and are separately and automatically

labeled. Spatial processing improves layer accuracy from 85% to 94%. Significant

layer accuracies include the “road network” at 93%, “buildings”at 97%, and “major

buildings” at 98%.
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Abstracting GIS Layers

from Hyperspectral Imagery

I. Introduction

At the dawn of the twenty-first century, the United States Air Force (USAF)

is engaged in tactical urban warfare. According to the 2006 publication of

the National Strategy for Combating Terrorism, “America is at war with a transna-

tional terrorist movement fueled by a radical ideology of hatred, oppression, and

murder.” [28] Since the invasion of Iraq in 2003, the intervening years have been

marked by house-to-house fighting and street clashes with terrorists and militants.

Intelligence Preparation of the Battlespace (IPB) for this asymmetric style of warfare

presents several challenges including providing current maps of the area of opera-

tions, continuously updating those maps to reflect new information and changes, and

abstracting usable information from the maps. Managing the battlespace more effec-

tively means possessing the most timely information and using technological means

to increase situational awareness. Air Force Doctrine Document 1 (AFDD-1) states

that as “. . . a leader in the military application of air, space, and intelligence, surveil-

lance, and reconnaissance technology, the Air Force is committed to innovation to

guide, research, development, and fielding of unsurpassed capabilities.” [50] The work

in this thesis directly enhances four USAF core competencies (see Figure 1.1).

This chapter provides a brief history of remote sensing, discusses hyperspec-

tral image technology, Geographic Information Systems (GIS), spectral and spatial

analysis, and the role of this thesis in using hyperspectral imagery to produce GIS

layers.

1.1 A Brief History of Remote Sensing

The first black and white imagery of the earth’s surface was made in 1858 [9];

but, it wasn’t until 1972 that the first satellite dedicated to remote sensing of the
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Figure 1.1: The work in this thesis enhances four USAF core competencies.

earth’s surface was launched [9]. A series of Landsat satellites expanded the portion

of the spectrum that is collected, enabling computer processing of images. Since the

1990’s, multi-spectral remote geosensing satellites collect as many as ten wavelengths

in the Visible and Near Infrared (VNIR) spectrum that are targeted at geosensing of

the earth’s natural environments. Geosensing satellites enable the automated clas-

sification and labeling of natural materials, e.g. vegetation, soils, clay, and other

spectrally distinct materials. The natural environment consists of large areas of

agriculture, forest, desert, and other uniform regions. To sense these large areas,

geosensing satellites can have a resolution of tens of meters per pixel [9]. This sensor

resolution precludes detailed analysis of “cluttered” urban scenes. Thus, the limited

spectral content and sensor resolution of the multi-spectral images prevent the correct

classification of most materials used in the construction of an urban city.

Hyperspectral imagers collect hundreds of wavelengths uniformly across the

VNIR spectrum, and have a sensor resolution of meters per pixel. The spectral

fidelity enables the classification of a broad range of natural and man-made mate-

rials. A 1m/pixel sensor resolution allows detection of urban objects e.g. vehicles,

houses, and trees. Hyperspectral imagers can be flown on board many types of air
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platforms [44] or on a satellite. Today, nations such as Russia, China, Japan, and In-

dia are launching satellites capable of sub–1m/pixel sensor resolution [36] and collect

enough spectral channels to be considered hyperspectral imagers.

1.2 Hyperspectral Imagery

Hyperspectral imaging technology grew from remote and geosensing roots. With

minimal adaptations, it can be weaponized for military applications. One of the pri-

mary military applications is imaging the urban environment. Hyperspectral imagery

augments, rather than replaces, current chromatic imagers.

1.2.1 Weaponizing Hyperspectral Imagery. “Today, the Air Force is the

major operator of sophisticated air- and space-based intelligence, surveillance, and

reconnaissance systems and is the Service most able to quickly respond to the in-

formation they provide.” [50] Hyperspectral imagers are able to collect hundreds of

channels in the VNIR region of the spectrum. By collecting such a broad of the spec-

trum, similar materials be distinguished. Distinguishing natural materials, e.g. clay

and vegetation types, has been the subject of many papers (see [17], [42], [42]) since

the launch of the first remote-sensing satellite more than thirty years ago. What is

new is the increasing resolution of the imagers. Where it would previously take acres

of grassland to register a single pixel on the satellite image, today’s imagers can reg-

ister an automobile on multiple imager pixels. Recent remotely sensed hyperspectral

images can be used to distinguish lawns, houses, cars, roads, and sidewalks – the

features of interest in an urban environment.

Weaponizing hyperspectral imagers involves adapting a commercially available

imager for use with a military air platform (e.g. a UAS) or using available satellite

imagers. Hyperspectral images can be several hundred megabytes to gigabytes in

size, and a Line of Sight (LOS) high-bandwidth data connection enables off-board

processing of the data. There are two basic requirements for using a hyperspectral

imager in military applications. First, the need to sense urban environments and
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objects found in the urban environment necessitates sub–1m/pixel sensor resolution.

Second, the imager needs to collect hundreds of channels in the VNIR to enable au-

tomated exploitation of the image. Hyperspectral imagers that meet these conditions

are commercially available [44].

One scenario for weaponizing hyperspectral imagery involves flying the imager,

which weighs tens of pounds [44], on board a medium altitude UASs, illustrated in

Figure 1.2. A medium altitude UAS, including the RQ-4 Global Hawk, has a 2, 000lb

payload, thirty-one hour loiter time, and a high bandwidth line of sight data link [32].

Flying a hyperspectral imager on board a medium altitude UAS provides near real-

time persistent surveillance over an area of interest. The technology developed in this

thesis could be used for continuous imaging of an area of interest and provide current

GIS layer information. Other on-going research seeks to uniquely identify automo-

biles, track dismounts, monitor foot traffic patterns, and provide additional close-in

intelligence to the battlespace commander. “Surveillance assets are now essential to

national and theater defense and to the security of air, space, subsurface, and surface

forces.” [50]

1.2.2 Collecting in the Urban Environment. The urban environment is a

worst-case scenario for putting together a cohesive, understandable scene abstraction.

One reason for this is the presence of spectrally indistinct materials that makes spec-

tral analysis problematic. Two such materials are asphalt shingles on rooftops and

asphalt roadways. In [30], the authors concluded that urban streets and rooftops

cannot be reliably distinguished without feature shape or context information. This

highlights the need to exploit the spectral-spatial characteristics of a hyperspectral

image.

Another challenge to spectral and spatial detection occurs when roadways and

rooftops are partially or fully occluded by tree or other foliage, as pictured in Fig-

ure 1.3. The variety of materials and their orientation in the man-made environment

leads to a large number of mixed pixels, which do not fare well in a winner-takes-all
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Weaponizing Hyperspectral Imagery

High Altitude

Medium Altitude UAS
(Ideal Platform)

Low Altitude UAS

Figure 1.2: Possible method to weaponize hyperspectral imagery using a medium
altitude UAS (middle picture) for persistent surveillance and sub-meter resolution.
Hyperspectral imagers collect images line-by-line in a “pushbroom” mode (blue line).
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approach to classification. Due to the natural growth and constant change in urban

environments, consistent and rapid scene abstraction methods are needed [36].

1.2.3 Augmenting Chromatic Imagery with Hyperspectral Imagery. A chro-

matic imager collects three channels: red, green, and blue (RGB). Multispectral im-

agers collect more than three channels, but usually less than ten. A hyperspectral

imager collects hundreds of channels across the visible spectrum (400nm to 700nm)

and the near infrared spectrum (700 to 2400nm). Hyperspectral images require sig-

nificantly more bandwidth and disk storage than RGB images. Most hyperspectral-

capable satellites also collect RGB imagery.

RGB images, an example of which is pictured in Figure 1.3, are three channel

(or three-color) images that cannot be effectively or reliably processed into GIS layers

with automated or semi-automated means. Spatial processing of the image to identify

features does not translate into identifying specific shapes such as buildings, roads,

ponds, or other objects. The plurality of similar color information makes segmentation

of the image by color difficult. This necessitates using hyperspectral imagery to

automate scene segmentation and GIS layer creation.

1.3 Geographic Information Systems (GIS)

GISs provide simple outline or polygon identification of scene features in sep-

arately labeled GIS layers that can be viewed individually. GIS layers can be an

excellent resource for intelligence preparation of the battlespace (IPB); however, au-

tomating GIS layer abstraction requires hyperspectral imagery.

1.3.1 GIS Layers. One common way to abstract usable information is with

GIS layers. Two examples of this are the online Google MapsTM and MapquestTM pro-

grams. GIS layers for buildings, major buildings, roadways, and vegetation can be

layered over terrain, topographic, or satellite image data. The availability of this type

of GIS information is foundational to current research into future technologies. For
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RGB Chromatic Image

Figure 1.3: It is extremely difficult to reliably segment this RGB chromatic scene
with a computer algorithm. It requires detailed manual processing of the image.
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example, the work in [31] develops a target behavior prediction program based on a

GIS representation of an urban scene, shown in Figure 5.1. In [12], the research de-

pends on scene segmentation to drive the false alarm rate from 0.7 to 0.0, illustrated

in Figure 5.2.

GIS road network maps are created through a labor-intensive process that can

include manually marking road segments while viewing RGB images to using individ-

uals driving vehicles around with Global Positioning System (GPS) units that create

a digital representation of the road network. The street mapping project [1] uses the

latter method. The maps are then orthorectified to longitude and lattitude, registered

with information gathered by other driving teams, assembled, hand-matched to ex-

isting satellite terrain maps, coded into vector maps and published. GIS layers are

used to outline buildings and other features, usually with generic polygon shapes.

This solution, developed by many commercial companies, does not satisfy the

needs of the Combatant Commander in a hostile environment. The use of on-ground

teams to acquire road network information and the time required to assemble high-

quality digital maps hinders the effectiveness of the kill chain.

1.3.2 GIS Layers and Intelligence Preparation of the Battlespace. Intelli-

gence Preparation of the Battlespace (IPB) and battle management are organized

around maps. Viewing high-resolution “cluttered” maps of urban scenes is a time-

intensive process, and battle maps are best abstracted into separate layers that pro-

vide access to a single type of information at one time. GIS layers are ideally suited

to this type of battle management by allowing one or more features to be consid-

ered at a time. The creation of GIS layers for a hostile environment is difficult and

labor-intensive. Hyperspectral imagery allows the automation of the task.

1.3.3 Hyperspectral Images and GIS Layers. Hyperspectral imagers with

automated image processing techniques are the gateway to the future of surveillance

because they acquire enough information to distinguish surface features. This thesis
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approaches the conceptual topic of creating abstracted, usable information from these

images in an automated way. This information is then presented to the user in a

format, the GIS layer, that is both familiar (as in Google MapsTM) and actionable.

GIS layers are vector maps that have the advantage of being highly compressible and

can reduce bandwidth requirements by several orders of magnitude. One experiment

performed by the this author compressed two gigaybes of vector graphic animations

into less than twenty megabytes. This thesis demonstrates both the spectral analysis

of a sample hyperspectral scene and the categorization into multiple, separate, GIS

layers where each layer is labeled appropriately and can be overlaid over the original

image.

By processing hyperspectral images in near real-time, it would be possible to

provide continuously-updated digital maps that reflect minutes to hours-old infor-

mation of the current ground configuration including navigable roads, waterways,

obstructions, and complete and destroyed structures such as buildings. “The art of

intelligence is rapidly turning information gathered through surveillance and recon-

naissance into an accurate, predictive, and actionable format that can be used to assist

planning, execution, and evaluation of air and space operations.” [50] The next critical

step in converting imagery to maps is the process of escalating from feature abstrac-

tion to concept abstraction. Today, stitching together groups of pixels into buildings,

roads, water bodies, trees, parks, fields, and other conceptual objects is completed

through an almost entirely manual process using high-resolution chromatic imagery,

driving cars around with GPS units to locate roads, and comparing results with old,

out-of-date maps. This is a non-stop, on-going, manual process that is not suitable

for real-time urban warfare because it yeilds maps that are months to years old. This

is where the latest hyperspectral imagers provide new capabilities and possibilities.

1.4 Spectral and Spatial Analysis

The vast majority of authors choose either spectral or spatial analysis. In

machine-learning, optimizing spectral analysis algorithms is the preferred approach,
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Spectral Analysis Spatial Analysis

Figure 1.4: Machine learning optimizes spectral analysis by selecting sample
spectra in random order (left image). The spatial information of a scene (right
image), however, contains valuable information. This thesis exploits the spectral-
spatial relationship.

considering the tremendous difficulties in the arena of spatial image processing. The

spatial arrangement of the pixels is how the human brain interprets these abstract

concepts, but computers are rarely tasked to do this kind of interpretation because of

the extreme unreliability of automated spatial image processing algorithms. Simply

put, spatial processing of images is tremendously difficult. What a human can discern

from just a quick glance at an image, computers consistently fail at conceptualizing.

Figure 1.4 illustrates these opposing concepts.

When spatial processing is used in conjunction with spectral analysis, it is not

necessary to maximize the classification accuracy of the hyperspectral image. Spatial

analysis can significantly improve the resulting accuracies. However, relying solely on

accuracy as a measure of maps quality is unreliable. For example, a GIS layer may

indicate the existence of a road where an RGB image shows only tree foliage.
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1.5 Research Goals

The goal of this thesis is to automate the creation of GIS layer shape files

by exploiting the spectral-spatial relationship of a hyperspectral image cube. It is

assumed that an a priori endmember spectra, a spectral database, or specific scene

knowledge is not available. This work furthermore seeks to connect the road network

under significantly tree-occluded roadways. The design will be modular and allow

for future extensions that increase the level of automation, robustness, resistance to

error, and quantity and quality of the results.

This process is accomplished in two major phases: spectral analysis and spa-

tial analysis. A hyperspectral image cube input is spectrally processed with a self-

organizing map (SOM), which is then segmented into spectral regions corresponding

to materials of interest. The SOM segmentations are then used to create binary-valued

spatial maps that show the possible locations of the materials of interest. These ma-

terial maps are processed and used in various combinations to produce the final GIS

layers.

1.6 Organization

This thesis contains five chapters. Chapter I provides an introduction to hyper-

spectral images, the military uses of the technology, and what results to expect from

the technology developed in this thesis.

Chapter II surveys the literature focusing on scene segmentation, spectral anal-

ysis, and spatial analysis. There are several foundational texts that contributed to

the success of this paper. There are several articles published in the last few years

that show a trend of expanding on spectral analysis with additional spatial analysis as

done in this thesis. Going the extra step of processing an image spatially after it has

been processed spectrally is seen as a way to improve both spectral analysis as well

as scene segmentation. Some constituent technologies, e.g. morphological operations

and self-organizing maps, are detailed.
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Chapter III discusses process development of this thesis. A step-by-step presen-

tation of the process, from the initial spectral analysis to the multiple levels of spatial

analysis accomplished to produce the final products, is provided in detail.

Chapter IV presents the experimental results. This includes the multiple inter-

vening steps leading to the final products. The steps needed to create the final GIS

layers and segmented scene involve a mix of bottom-up and top-down approaches to

analyzing the spatial scene. The foundational step is to identify what is known about

the scene, then use that information to iteratively infer knowledge of the scene. By

accounting for spatial arrangement of features, the inferred knowledge is refined and

solidified, and then used again to infer additional knowledge. High level features, e.g.

“fields”, are abstracted from the spatial relationship of pixel-level features, e.g. grass

pixels, and this knowledge becomes part of the refinement process.

Chapter V analyzes the results of the thesis and the final GIS layers are pre-

sented, visually, as GIS overlay products. It also includes future work and concluding

remarks. This thesis is a proof-of-concept approach for a novel method of mixing

spectral and spatial analysis.
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II. Background Information

This chapter provides the background knowledge, including concept development

and definitions, to support an exploration of hyperspectral image analysis. It

examines the approaches used to address the problem, classify hyperspectral data,

segment scenes, and provides a survey of recent literature encompassing the state-of-

the-art.

Several examples from current literature demonstrate approaches to scene seg-

mentation. Fewer articles deal explicitly with using hyperspectral data. This is likely

due to the relatively recent interest in and the availability of hyperspectral imagery.

Given these innovations, resources are being devoted to developing algorithms that

are tuned to take advantage of the newer hyperspectral images and the expected

future availability of such images.

2.1 Hyperspectral Images

Hyperspectral images are conceptually different from Red-Green-Blue (RGB)

chromatic images by the number of channels that are collected. Where RGB im-

ages contain only three-channels, hyperspectral images can collect hundreds of chan-

nels. Before the development of hyperspectral imagers, multi-spectral imagers were

available that typically collected the RGB channels plus an additional two to seven

channels (channels are usually referred to by their wavelength).

Figure 2.1 is an example of a hyperspectral image. Because the data is presented

with spatial dimensions intact and the channels as the third dimension, it can be

referred to as a data cube.

2.1.1 Collecting Hyperspectral Images. The device used to collect hyper-

spectral images is an Imaging Spectrometer [9], but is referred to as a hyperspectral

imager. Modern commercial versions often consist of three separate collectors. There

is one for collecting bands in the visible spectrum and two for the near infrared. Ac-
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Hyperspectral Image Cube

Figure 2.1: Example of a hyperspectral image cube. The
ultraviolet band corresponding to wavelength λ = 0.3975 is seen
on top, with each of the 194 bands below it.

cording to [43], the range is typically “at least 0.4 to 2.4 micrometers (visible through

middle infrared wavelength ranges).”

One of the major advantages to hyperspectral imagers in a military context

is that the cameras collect reflected light. Unlike radar, lidar, and other sensors,

hyperspectral imagers do not radiate energy. This reduces the likelihood that the

imager can be identified or tracked while it is operating. The hyperspectral camera

can, in this way, be operational the entire time it is over the target area rather than

operating in a detection-avoiding burst-mode.

The camera typically operates in a push-broom manner, simulated in Figure 1.2.

“In many digital imagers, sequential measurements of small areas are made in a

consistent geometric pattern as the imager platform moves and subsequent processing

is required to assemble them into an image.” [43] The imager collects a single line

at a time (see Figure 1.2, blue line), where the resolution of the line depends on the

number of pixels the imager collects. These lines are oversampled and then processed

into a continuous hyperspectral scene. Multiple strips are then stitched together to
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An Uncorrected “Wavy” Hyperspectral Image

Figure 2.2: A hyperspectral image before geocorrection. This image is best used for
spectral analysis. Geocorrection restores the spatial relationships but alters spectral
information.

create a coverage scene. If the aircraft veers off-course, the variation in the flight

path is recorded and the imagery is later corrected for the flightpath deviations. An

example of an uncorrected image is presented in Figure 2.2. After the radiance data

upwelling from the earth is collected, it is processed into radiances.

2.1.2 Radiance and Reflectance. Hyperspectral images are collected in radi-

ance. This is an absolute number of photons hitting the sensor in a given wavelength.

The number of photons that are returned from the earth’s surface can vary depending

on a number of factors, including the amount of sunlight reaching the earth’s surface.

Images collected at various times of the day exhibit varying radiances. In [20], the

authors attempt to correct for the zenith angle of the sun to calibrate the sensor and

adjust the radiance values.

Since hyperspectral images are collected in multiple runs over the target area,

the variation in radiance can make it difficult to compare and stitch together multiple

hyperspectral images taken over the same target area. The solution is to use a ratio,

comparing the amount of incoming light to the amount of light returned to the imager.

For a given material, the amount of light it reflects (ν1) is proportional to the amount
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of light it receives(ν2). These two values are used in the computation of the surface

reflectance (ρ) in Equation 2.1.

ρ =
ν1

ν2
(2.1)

2.1.3 Model of Light Transmission and Radiance Measurement. The light

source is the sun. The atmosphere absorbs radiation because of water content. Sev-

eral bands are removed from the hyperspectral image during atmospheric correction

because of this scattering. Light is then transmitted to the earth’s surface, where

it illuminates the targets. Some of the radiation absorbed by the atmosphere is re-

transmitted to the earth’s surface. The earth’s surface scatters the majority of the

light, but about three percent [36] radiates toward the imager. The atmosphere ab-

sorbs some of the radiated energy. The absorbed radiation as well as the light radiated

from the earth’s surface are collected on the sensor platform. Figure 2.3 demonstrates

pictorally how the sun’s light is ultimately collected by the hyperspectral imager. The

imager can be located in a satellite or on an airborn platform. Before the data can

be used, atmospheric correction is performed.

2.1.4 Atmospheric Correction. The atmosphere plays a quantifiable role in

collecting imagery. The atmosphere disrupts the path of radiation as it is reflected

from the earth’s surface, and post-processing must correct for these effects.

Some of the factors include atmospheric scattering, refraction, and absorption.

Scattering is a result of particles (e.g. pollen, water, or dust) in the air between

the imager and the source. Refraction is the result of light bending at the junction

between two different materials, for example, atmospheric layers. Absorption occurs

when energy is strongly attenuated, especially through gases (e.g. ozone), oxygen,

carbon dioxide, and water vapor [43].

Reflectance is estimated through one of several methods: flat field conversion,

average relative reflectance conversion, empirical line method, and modeling methods.
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Model of Light Transmission and Radiance Measurement
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Figure 2.3: Model of light from incidence at the sun to reflectance at the earth’s
surface. Less than 10% of the sun’s light is ultimately collected at the satellite [36].
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The empirical line method is commonplace and is used to correct the hyperspectral

image used in this thesis. The method uses linear regression to compare two or more

known in-scene spectra with the spectra that were actually collected. All of the in-

scene spectra are then corrected by an empirically determined gain and offset value.

Atmosphere disturbances are both linear and non-linear in nature, but the linear

effects dominate. Empirical line correction is therefore the preferred way to correct

imagery because of its general acceptance and its ability to remove the dominant

atmospheric effects.

Reflectance = Gain× Radiance + Offset (2.2)

2.1.5 Spectral Features. Spectral features result from the electronic or vi-

brational properties of atoms [13]. Electronic features occur when electrons transition

between valence shell energy levels. Vibrational features occur from the individual

atoms vibrating against the lattice structure in which they are trapped. Different

materials have characteristic electronic and vibrational features depending on their

valence shells and how they arrange themselves in a lattice structure. A composite or

mixed spectra results with multiple material types combined together [43].

The electronic and vibrational characteristic of atoms at certain frequencies

also produce harmonics at multiples of the fundamental frequency. These harmonics

lead to a high degree of correlation between the different wavelengths of a spectral

signature (correlation measures the strength and direction of the linear relationship

between two random variables [3]). Figure 2.4 illustrates correlation among the bands

of a hyperspectral image.

2.1.6 Spectral and Spatial Pre-Processing. Spectral pre-processing is accom-

plished on-sensor or prior to spectral analysis. The pre-processing steps are unique to

each imager design and are assumed to be accomplished before image analysis. The

calibration takes into account environmental effects. Some of the effects are angle of
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Figure 2.4: Hyperspectral images exhibit a high degree of correlation between the
wavelengths because of vibrational and electronic effects.

2-7



the sun, viewing angle of the imager, light scattering, secondary illumination from

reflected light, shadowing, solar radiation from scattering, and imager noise [42].

An airborn imager (as opposed to a satellite imager) can easily be vectored

off course, for example, by a wind gust. These deviations in the flight path are

recorded by the inertial navigation system and later used to geocorrect the image.

Uncorrected images look “wavy”, as shown in Figure 2.2. By using the flight path

geometry, the wavy image can be “straightened”. This process is called geocorrecting

the image. Gecorrection restores the spatial relationship of the pixels, but alters

spectral information because of the pixel averaging and interpolation that must be

accomplished during the geocorrection process. Since images from multiple flight

paths are stitched together along the edges, there may be gaps in the information

where a second flight path may not overlap the deviation experienced in the previous

collection. The geocorrection process may result in interesting spectra that do not

actually exist on the ground [38].

In order to maximize the effect of spectral analysis and spatial analysis, spectral

analysis and classification can be accomplished on the image before geocorrection.

Spatial analysis is best done on the geocorrected image or else many spatial features

(roadways, buildings, etc) may appear where no actual feature exists.

2.2 Spectral Analysis

Once a hyperspectral image is available for spectral analysis, it is ready to be

classified. Classification is the process of assigning a label to an observation [42]. Prac-

tically, classification algorithms assign pixels to a given category. Multi-algorithm

approaches as in [11] use majority-voting to improve the classification of individ-

ual pixels. Most of these algorithms, however, require supervised learning methods.

Training samples are manually and laboriously classified. Increasing the number of

training samples usually results in improved classification accuracy. In this thesis, the

goal is to remove the manual labor element by using unsupervised classification meth-
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ods which do not need manually classified training samples. Two popular methods

considered here are k-Means Clustering [51] and the Self-Organizing Map [22].

2.2.1 k-Means Clustering. k-Means clustering is a general clustering tool

that is often applied to spectral analysis. This tool assumes a particular statistical

distribution of the data, usually a normal distribution. After random initialization of

the means and standard deviations, the ℓ2–norm is computed and the centroid of the

distribution is updated. Through an iterative process of updating centroids, spectra

are segmented and assigned to one of the existing k-means.

k-Means clustering is a promising method to segment a scene because it requires

minimal user input and requires no training samples to accomplish segmentation.

Choosing the number of cluster centers, k, can be a challenging task. Choosing k is

in advance and without a-priori knowledge of the scene is challenging. If k is chosen

too small, areas of the scene can be grouped together even though the materials of

interest may be distinct (see Figure 2.5). If k is chosen too large, the segmentation can

result in thousands of separate groups of materials and appear meaningless and noisy.

A significant difficulty develops when similar materials are segmented differently and

later need to be combined into a contiguous region. As noted in [51], “. . . once the

clustering is done, it may be observed that the clustering is not entirely satisfactory

in the sense that there may be too fine or too coarse a clustering”. The subsequent

spatial segmentation of the scene from the spectral clusters is necessary to identify

the spatial structure. Due to the number of spatial segments and grouping of distinct

materials, spatial analysis is an insurmountable task. An example of these difficulties

is illustrated in Figure 2.5. Nonetheless, there have been some attempts to apply

k-Means clustering to hyperspectral data with varying degrees of success.

In [29], k-Means clustering is used to separate a hyperspectral image into sep-

arate regions. A pixel is assigned to a cluster by minimizing the ℓ2–norm, and con-

vergence is determined when less than 5% of pixels change mean vectors during each

iteration. The authors overcome some of the problems with random initialization by
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Figure 2.5: Illustrates the difficulties with k-Means clustering. Distinct materials
(e.g. houses and trees or buildings and roads) are not being separated. Similar
materials (e.g. grass) are not being grouped. Abstracting the spatial structure of this
scene is an insurmountable task.
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developing an informed initialization algorithm, which improves performance of the

clustering; however, the informed initialization only shows improvement in the case

where convergence is set at less than 2% of the pixels changing class. Informed ini-

tialization also increases the number of regions in the final region map. By varying K

from 2 to 16, the image is segmented into 101 to 695 spatial regions.

In [25], the traditional k-means clustering is extended to allow kernel functions

to replace the ℓ2–norm usually used to assign pixels. This method allows pixels to

belong to more than one cluster simultaneously. The authors use a Gaussian kernel,

the normal clustering sensitivity to outliers is reduced. This work creates the spatial

neighborhood of the pixel to improve assignment of pixels. The authors worked with

RGB data, offering the theory needed to extend the process to multi and hyperspectral

images.

2.2.2 Self-Organizing Maps. The human brain is capable of responding to

sensory input by training specific areas of the brain. In the case that part of the brain

is damaged, the “. . . recruitment of cells to different tasks depending on experience

is well known” [22]. The self-organizing map (SOM) models this learning behavior

by specifying an interconnected set of neurons. When new information comes in,

the specific neuron that deals with the new information is identified. The neuron

is modified to adapt to the new information, and then the surrounding neurons are

modified in the same way, but with lesser impact. As a result of “experiencing”

new information, “. . . a two-dimensional lattice of neurons can create ordered maps

of any (metric) high-dimensional signal space, often in such a way that the main

dimensions of the map thereby formed correspond to the most prominent features

of the input signals” [22]. In response to high-dimensional hyperspectral images,

the SOM organizes the spectra by the type of material that generated the spectra.

The SOM then becomes a useful tool to cluster materials, making it an ideal choice

for segmenting a hyperspectral scene into materials. SOM’s have several desireable

properties that support using this tool for this thesis.
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Figure 2.6: The scene spectra and the SOM PE’s are both n–dimensional.
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1. There is no user input required to do the spectral analysis. It is a completely

unsupervised algorithm.

2. It does not require any training samples that have to be manually labeled by a

user.

3. It organizes three-dimensional hyperspectral images into a two-dimensional ab-

straction of the information.

4. It reduces the abstracted knowledge by one or more orders of magnitude, re-

ducing computation time.

5. The SOM learning method is an averaging process, making the SOM resilient

to noise and outliers.

6. The SOM preserves the topology.

The SOM is specified as a fixed lattice of neurons, often a square or hexagonal

lattice. Each neuron is also called a processing element (PE) that has associated with

it a weight, w. The PE corresponds in number of dimensions to the hyperspectral

image, as shown in Figure 2.6.

2.2.3 SOM Learning Algorithm. The SOM learns in three phases: compet-

itive learning, cooperative learning, and synaptic adaptation as shown in Figure 2.7.

Each of these phases is accomplished in response to an “experience” or input data.

An n–dimensional spectra from a hyperspectral image is randomly selected and used

as input to the learning process. The three phases of the learning process are iterated

until convergence where convergence is usually defined as a fixed number of training

steps.

During competitive learning, a “winning” neuron is selected. Each PE receives

the same input information, and all of the PE’s “compete” to select the winner.

Different inputs determine different winners. The metric most often used to determine

the winner is the minimum euclidean distance between the input spectra, xn, and each
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of the PE’s weights, wk (Equation 2.3). Another way to say this is that the SOM

nearest neighbor in the ℓ2–norm sense to the input vector is the winning PE.

arg min
k

||xn − wk||, k = 1 . . .K (2.3)

The cooperative learning phase follows the competitive learning phase. In this

phase, the winning neuron activates its neighbors using a neighborhood function, hij(t).

One option is a non-normalized Guassian neighborhood function in Equation 2.4. As

the variance, σ2, decreases with time, the winning neuron neighbors are activated

at a decreasing rate. Although many neighborhood functions can be specified, the

discussion here is limited to the Gaussian neighborhood function because of its use in

this thesis.

hij(t) = exp

{

−||PEi − PEj ||

2σ2(t)

}

(2.4)

The third phase of SOM learning is synaptic adaption. During this phase, all

of the PE’s are updated. The learning rate, α(t), decreases according to a learning

schedule that is specified before the training begins. The synaptic update rule in

Equation 2.5 is the same for every PE except for the value of the neighborhood

function, hij . The synaptic update operation averages the new information with the

existing weight vector. This averaging makes the SOM resilient to noise and outliers.

wj(t + 1) = wj(t) + α(t)hij(t) (x− wj) , i = 1 . . . I, j = 1 . . . J (2.5)

2.2.4 SOM Learning Algorithm Example. Figure 2.8 is an example of the

SOM learning algorithm. Before learning begins, the SOM weight vectors, are ran-

domly initialized. A single input vector, xn, is randomly selected and the “winning”

neuron is identified. During the cooperative learning phase, the winning neuron ac-

tivates the surrounding neurons according to the Gaussian neighborhood function,

and then the synaptic adaptation is performed. After the SOM has learned the input
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data, the input information, xmn, from data space can be assigned to the SOM in

an ordered manner. The ability of the SOM to spatially order the high-dimensional

input information is referred to as topological neighborhood preservation.

2.2.5 Topological Neighborhood Preservation. Topological neighborhood

perservation is one of the key benefits to using a SOM to organize spectra. According

to [22], an “. . . intriguing result is that the various neurons develop into specific de-

coders or detectors of their respective signal domains in the input space.” Since the

SOM organizes hyperspectral images around their material types, the SOM becomes

a detector that organizes materials with a meaningful order. Segmenting the SOM

is the same as identifying material types in the original hyperspectral image. The

results of Figure 2.7 shows a conceptual idea of how the final SOM may order the

data space. If the input data is two-dimensional, then the topology of the SOM can

be plotted in two-dimensions, yielding a visual representation of the meaning of pre-

serving topology, illustrated in Figure 2.9. It does not follow that the SOM can label

the material types of each PE. An additional spectral analysis step is required. While

two-dimensional topology is explored in this thesis, in [15], the authors implement a

three-dimensional SOM topology.

2.2.6 SOM in Literature. The SOM is a very flexible tool that can be used

in organizing many different types of data. In [23], the author uses a SOM to improve

passive sonar tracking of multiple targets, resulting in an ability to triangulate target

positions at a higher rate than traditional bearing information can provide. In [8],

the authors apply a SOM to the trading behavior of the Australian Stock Exchange.

The SOM is able to distinguish buyer-initiated from seller-initiated trades.

In [26], the authors use a SOM to perform classification on a data set. They are

able to achieve an 80% classification rate. Finally, in [47] the authors explore in detail

visualizing the SOM topology as it relates to the spatial scene. This work directly

supports the approach to segmenting the SOM topology used in this thesis.
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Figure 2.8: Pictorial view of the SOM learning algorithm. The result is a SOM
that exhibits topological preservation of the high-dimensional data.
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SOM Learning and Topological Preservation

Figure 2.9: Two-dimensional input data (in gray) allows visualization of the preser-
vation of the topological neighborhood (lower-right image). In topological neighbor-
hood preservation, adjacent PE’s are assigned to the same data set.
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2.2.7 Using a SOM in Spectral Analysis. The key to exploiting the SOM

for spectral analysis is segmenting the neighborhoods that have been topologically

preserved. The number of PE’s with a given label (or material type) is proportional to

the number of pixels of that material that exist in the original hyperspectral image [22].

There are several ways to approach the process of segmenting the SOM neighborhoods.

One way is to make use of a-priori knowledge to segment what can be im-

mediately known or determined. An example of this is the Normalized Difference

Vegetation Index (NDVI) [36], presented in Section 2.2.9. It is a tool that is well

studied and has been used in remote geosensing for decades. The NDVI is a simple

ratio of visible and near infrared bands.

The topological neighborhood preservation characteristic of the SOM allows the

SOM to be segmented into contiguous regions where the contiguous regions are made

of adjacent SOM PEs. A SOM segment can be clustered around exemplar “seedling”

pixels (e.g. user selected or from a spectral database). The nearest neighbor “winning”

SOM PE to the the exemplar spectra in the ℓ2–norm sense is located, and spatial

analysis technique can be employed to segment the region around the “winning” PE.

The region can be segmented by setting a threshold, using edge detection modified

for high-dimensional data, region growing, or specifying a fixed number of nearest

neighbors.

2.2.8 The Spectral Database Tool. The US Geological Survey provides hy-

perspectral endmember spectra for hundreds of materials. The materials are separated

into categories: Man-Made, Mixture, Volatile (water), Plant, and Mineral. They are

also sub-categorized to identify the common name for each material (e.g. Oak, Maple,

Seawater, Asphalt, etc). This database is a valuable resource of endmember spectra

that can be used for a quantitative assessment of an image. However, a spectral

database is not used in this thesis for three reasons.

First, an endmember spectra that is desired may not exist in the database.

Because the spectral analysis uses a nearest neigbor calculation based on the ℓ2–
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Ground Truth Vegetation Map NDVI Representation

Figure 2.10: The ground truth vegetation map (left) compares favorably to the
hyperspectral image after application of NDVI (right).

norm, it finds pixels in the scene that are the most similar to the desired spectra. For

example, if searching for pixels similar to a US Geological Survey sample of concrete,

some image pixels are returned that are geometrically close to concrete, even if there

is no actual concrete spectra in the scene. There is no way to know for sure if

these pixels are actually concrete. Second, in-scene materials may be composed, at

the atomic level, of different materials than those used in the US Geological Survey

Database. Concrete is a good example of this phenomenon. Concrete is often made

of materials local to a region. The soil, soil content, minerals, ash, stone, pebbles, and

other materials used in concrete vary distinctly from region to region and even field

to field. Concrete buildings on different sides of a city may have different spectra.

Third, the presence of dust, pollen, snow, water, or other contaminants change the

spectral signature and render the spectral database information obsolete. For these

reasons, in-scene spectra are used for spectral analysis.

2.2.9 Normalized Difference Vegetative Index (NDVI). The NDVI is a tool

that was developed early in geosensing. It is used to estimate the vegetation in desert
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regions [55], determine vegetation type and coverage [54] and [56], determine the age

of trees [35], and assess the quality of urban environments by their foliage cover [53].

In order to perform photosynthesis, plants collect energy in the visible region of

the spectrum between 400 nm and 680 nm1. The Near Infrared (NIR) segment of the

spectrum, from approximately 725 nm to 1100 nm, does not provide enough energy

for photosynthesis and only acts to unnecessarily heat the vegetation. Plants have

adapted to absorb most of the photosynthetic-friendly visible spectrum and scatter

the NIR region of the spectrum. This creates a very sharp jump in the red region

of the visible spectrum, somewhere between 680 nm and 725 nm. This sharp curve

is caused by photosynthetic-active cells in the vegetation and is commonly called the

“Red Edge” [36].

The NDVI compares the two sides of the red edge. In the visible region, the light

is absorbed for photosynthesis and less than 20% of the light is reflected. There may

be a small peak in the visible green region, which gives vegetation its characteristic

green coloring. In the NIR, vegetation scatters up to 80% of the incident energy. By

comparing these two regions in a ratio, an assessment can be made about how likely

a particular hyperspectral pixel contains vegetation.

NDVI =
NIR−RED

NIR + RED
(2.6)

The National Oceanic and Atmospheric Administration (NOAA) satellite bands

for the RED and NIR regions, 400 nm to 680 nm and 725 nm to 1100 nm, are used

to calculate the NDVI. Selecting a single sample band somewhere in the NOAA NIR

or RED range might result in randomly selecting a noisy band and skew the results.

The red edge also becomes less sharp when dealing with mixed spectra (e.g. grass and

soil), and this can result in an NDVI value that is lower than it should be. In order

to make the NDVI value robust to noise and vegetation type, an averaging operation

1The values 400 nm to 680 nm and 725 nm to 1100 nm were chosen because these are the ranges
used by the National Oceanic and Atmospheric Administration (NOAA) satellites.
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Table 2.1: Listing of six NDVI thresholds and their
interpretations.

NDVI Value Interpretation

1.0 to 0.8 Dense Vegetation

0.8 to 0.3 “Rule-of-Thumb” Vegetation Threshold

0.3 to 0.2 Mixed Spectra

0.2 to 0.1 Soil

0.1 to −0.1 Standing Water

−0.1 to −1.0 Water or Snow

was used. RED is the average of all the bands between 400 nm to 680 nm and the

NIR value is the average of all the bands between 725 nm to 1100 nm.

The resulting NDVI values in Table 2.1 are between definitely not vegetation

(-1), and definitely vegetation (+1). Some other things can be generally inferred

from the NDVI, such as the health of vegetation, the soil content, and agriculture

yields. In [54], spectral information and NDVI was used to separate trees from shrubs.

In [35], the authors used NDVI to assess the age of trees. In [53], the authors used the

water absorption analysis in combination with NDVI to distinguish trees from other

vegetation in an urban environment. Figure 2.10 is an example of applying NDVI to

a hyperspectral image.

NDVI measures the presence of chlorophyll. Chlorophyll content can depend

on drought and the season. As chlorophyll content is lessened, the NDVI threshold

decreases toward the soil range threshold. When analyzing hyperspectral images, it

is necessary to take into consideration the season of the year in which the image was

acquired.

2.2.10 Separating Trees from Grass. In the urban classification problem,

roadways may often be occluded by overhanging vegetation. This is usually broad-

leaf or needle-bearing trees. In order to segment both the roadway and the trees, it
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is necessary to separate tree spectra from other vegetation. Of interest are any kind

of obstructions to movement in the urban environment, which is another justification

for focusing energy on segmenting trees. This problem, in general, is a challenging

one.

In [54], the authors used a fuzzy classification method to separate trees from

shrubs. Water absorption in combination with NDVI was used in [24] to identify trees

from grass. The spectral features of broad-leaf trees and needle-leaf trees were used

to estimate tree cover in [56]. The authors in [35] used NDVI to distinguish the age of

trees, and in [53] to distinguish types of trees in an urban environment. Other papers

have combined lidar height data with hyperspectral images to locate trees in an urban

environment. However, no consistent method has been developed to separate trees

from grass in all cases using spectral feature extraction alone.

2.3 Spatial Analysis

Spatial analysis with hyperspectral images is challenging. In [19], the authors

attempt scene segmentation by applying a modified edge detection algorithm that

can process high-dimensional data. Simple scenes with few mixed pixels and uniform

objects are used as the test data. The results are not extended to complex hyper-

spectral scenes. In [45] complicated heuristics with convolution operations highlight

road candidates and “suppress” background information. The resulting road network

segmented through spatial processing is incomplete and unsatisfactory.

One technique used in [6], [10], and [14] are morphological profiles. These profiles

are created by clustering and deleting pixels using standard morphological open and

close operations (detailed below). The author selects a single representative band,

performs edge detection, and then performs the morphological operations. The result

is a “fingerprint” that can be compared to known fingerprints, usually from a GIS

database. After the unknown and known fingerprints are matched, the GIS database is

used to improve the quality of the spectral classification. While technically making use

of the spatial arrangement of pixels in a certain band to register unknown images with
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a-priori knowledge, these approaches do not consider additional spatial information

such as size of the objects, relative location, or quantity. True spatial analysis exploits

all of these features.

2.4 From Spectral to Spatial Analysis

In traditional spectral analysis, every pixel in the original scene is labeled by a

classifier. In “known” scenes where the label of each pixel is known (often an arduous

manual task of identifying each pixel), the results from the algorithm can be compared

to the “ground truth”. The match between the ground truth and algorithm-produced

class labels is the reported accuracy. The quality of an algorithm is normally assessed

by its accuracy. In general, higher accuracies indicate better results. Nearly every

paper that uses machine-learning to do classification of spectra uses this approach, as

in [4], [6], and [52].

However, spatial information contains a wealth of information. Used in combi-

nation with spectral analysis, it can improve the algorithmic processing of a scene.

In [30], the authors found that distinguishing rooftop asphalt shingles from asphalt

road pixels was not possible without spatial size and shape context. In [47], the au-

thors visualize the link between the topology of a self-organizing map and the spatial

organization of the materials, but without using the spatial information to determine

the scene layout. In [14], the classification accuracy was increased from 79% to 83%

using spectral analysis combined with a spatial analysis technique called morpholog-

ical profiles2. In [5], the authors increased accuracy from 72% to 100% with wavelet

decomposition while analyzing very distinct vegetation types. In [21], the classifica-

tion accuracy is increased using Markov Random Fields. These results are typical of

spectral analysis. Starting with an initial accuracy, improvement comes from tuning

2The spatial analysis technique morphological profiles should not be confused with the spatial
morphological operations used in this thesis. Morphological profiles is a registration method for hy-
perspectral images and known GIS databases. This thesis assumes no prior GIS database information
is available.
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the spectral analysis algorithm, doing feature selection, and making use of a-priori

GIS database knowledge or endmember spectra.

This section is a unique contribution to the field of hyperspectral analysis. While

minimal use has been made of the spatial arrangement of pixels through morphological

profiles, there has been no notable research in the use of spatial analysis in combi-

nation with spectral analysis to abstract scene content. Part of the reason is the

reduction in accuracy. In the higher-accuracy-is-better mentality, completing spatial

arrangements, for example connecting roads under tree occlusions, would reduce ac-

curacy. Another reason is the difficulty in applying traditional spatial scene analysis

tools to high-dimensionsal data. Most papers, such as [4] and [6] limit the spatial

analysis tools to one to three bands of the hyperspectral image to emulate using an

RGB image. This approach does not exploit the value of having several hundred

spectral dimensions. The unique contribution is to use spectral analysis to identify

in-scene materials and create individual two-dimensional spatial material maps. By

examining the spatial layers first individually, then in conjunction with all of the other

material layers, knowledge is abstracted to form a complete set of information about

the hyperspectral scene.

There are several challenges with this traditional idea of accuracy. For example,

pixels classified as asphalt are rarely segmented into “road”, “parking lot”, “drive-

way”, or even “rooftop” (for tar or asphalt-shingle rooftops). An image with every

single pixel forced into one class or another also tends to appear, to the observer,

just as “cluttered” as the original, unclassified image. The solution to this problem is

to reduce the number of pixels that are classified, thereby reducing the information.

This follows the natural process people use in segmenting a scene. The corollary to

this solution is to separate the classified pixels into observable structures that make

sense to an observer, e.g. “road”, “buildings”, “trees”, and other major features of

an image. The spatial analysis problem is complicated by obscurations. If trees cover

majority of a roadway, the observer can sometimes mentally connect the roadway

sections underneath the trees. This is something most spatial analysis algorithms
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have an enormous difficulty in accomplishing because there is no known way to teach

a computer to conceptualize the location of non-existant objects.

Segmenting the SOM with overlapping neighborhoods results in PEs that are

classified with multiple labels. The sample hyperspectral image spectra can then have

multiple labels as well. By identifying tree vegetation that is mixed with roadway

pixels, it may be possible to identify roadway or structures that are obscured by

trees. The ability of the SOM to place mixed spectra between two groups of pure

spectra, and by using thresholds that allow the pixel to be included in both tree

and roadway analysis, brings about the ability to identify roadway underneath trees.

Spatial processing of sets of classified pixels (asphalt) into human-level abstractions

(rooftop, road) is a notoriously difficult problem.

2.4.1 Spatial Analysis. While spectral analysis is not intuitive without the

appropriate background, spatial analysis is instantly understood by most people. This

is because spatial analysis is accomplished by people on a continual basis every day

of their lives. When three bands of a spectral scene (usually from the red, green, and

blue regions) are combined into a false-color RGB image, the spatial understanding of

the scene by a human is usually instantaneous. The identification of buildings, roads,

parks, fields, and other features happens almost without conscious thought. Missing

information (roads under trees) is automatically filled in, and existing information

(large areas of grass) are quickly abstracted (into baseball fields, soccer fields, etc).

This instantaneous understanding is not the case for computer algorithms.

Many papers have approached the problem of spatial analysis, but the traditional

difficulties exist. Most attempts to do spatial analysis use well-understood and stan-

dard image analysis techniques of edge detection [25] or region growing [25] to identify

similar materials by setting thresholds. In [4], the authors limit the information by

reducing the number of bands under analysis to three.

In [4], the authors use a hyperspectral image of the DC Mall. The DC Mall

imagery is a 191 band hyperspectral image with a resolution of 1, 280 × 307 pixels.
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They use Principal Component Analysis to reduce the number of bands their algo-

rithm operates on to the three, accounting for 99% of information variation in the

image. By varying the size of the structuring element, image features were extracted

corresponding to the size of buildings. Using an automated method based on [48] and

starting with a given pixel, the spectral variations surrounding the neighborhood of

the incident pixel were used to calculate a threshold used to distinguish buildings.

The combination of the number of connected pixels, C(n), and the spectral variation,

D(n), was used as a goodness measure to distinguish regions. The equation for the

goodness, M(n), is

M(n) = D (n, parent(n))× C(n). (2.7)

In [52], the authors deal with the issue of using multispectral images to automate

the update of GIS databases. By manually overlaying the multispectral images over

GIS maps, the GIS map can be used to “classify” the pixels of the multispectral

images. After classification, change detection on the multispectral images is used to

determine new information, from which the GIS database is then updated.

Most spatial image analysis suffer the same issue. Once they identify a region,

border, segment, or other feature, they are unable to then abstract it into human-

concepts (e.g. house, road, or parking lot). It usually takes a human-in-the-loop to

confirm what the spatial analysis has found. Spatial analysis then becomes a process

of a human-dominant human-computer interaction to confirm or deny objects, and

fine-tune the selection process. This is a very labor-intensive process that needs to be

automated. The methodology developed in Chapter III addresses these challenges.

2.4.2 Morphological Operations. In [46], the author used a complicated

heuristic to describe the physics of how roads are laid out. The resulting road networks

are satisfactory, but not complete. The author suppressed scene information and

extracted road candidates using sample spectra. In [39], the authors extract the “road

skeleton” using spectral roadway identification and then growing the road segments

together. As the probability of detecting true roadways increases, the completeness
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of the road network dramatically decreases. Alternate spatial operations are needed

to construct complete roadway maps from a hyperspectral image. By specifying

roadway maps in combination with many other materials, morphological operations

may be used to accomplish spatial processing.

Morphological operations are uniquely suited to a human-level processing of

images. By isolating specific materials using spectral analysis, features of the image

become immediately obvious to humans. For example, identifying a few pixels of

roadway results in a significant number of roadway pixels being identified (and some

false alarms including asphalt shingles and parking lots). These pixels are separately

displayed in a two-value image, usually black-and-white, where one value marks the

pixels identified and the second value identifies everything else. For visual analysis,

the desired feature (roadway) is colored white, and the undesire feature (everything

else) is colored black. This highlights the road network to the user. The second thing

that becomes obvious is the shape of the feature - usually square, rectangle, or with

smooth-curves that signify man-made objects.

Once a particular material type is isolated into a binary spatial image, a mor-

phological approach to analysis becomes available. “The morphological approach is

generally based upon the analysis of a two-valued image in terms of some predeter-

mined geometric shape known as a structuring element.” [16] Choosing the geometric

shape is considered a user-option, however a standard set of rules apply when it comes

to grouping pixels in a spatial image.

These rules are as follows. It is possible to group pixels that are at least the

same size as the structuring element in size. This meets with the previous criteria

to assemble groups of pixels into complete abstract shapes. By starting with the

smallest structural element possible, a two-by-two square, groups of pixels can be

clustered. The pixels are automatically and iteratively grouped, even if the group of

pixels exceeds a two-by-two spatial size. It is possible to throw away pixels smaller
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Examples of Morphological Operations

Original Close, 5× 5 SE

Iterative Open/Close Open, 2× 2 SE

Remove Dilate, 3× 3 SE

Figure 2.11: The original scene (upper left) is operated on with a close with a
5× 5 SE (upper right), an iterative open/closes with an n× n SE where n = 2, . . . 10
(middle left), an open with a 2 × 2 SE (middle right), a remove that “outlines” the
objects (lower left), and a dilation with a 3× 3 SE that “fattens” the objects.
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+ =

Ground Truth Image Data Red and Blue Contribute to NEWA

Calculating the Non-Equal Weighted Accuracy

Figure 2.12: This is the process to calculate the NEWA. The NEWA accuracy
includes correctly classified pixels and does not include differences. In this example,
the red and blue highlighted boxes, representing correctly classified pixels 0→ 0 and
1→ 1, results in NEWA = 0.50.

than the structuring element. This means stray pixels no larger than a grouping of

one or two can be discarded.

The “grouping” operation is called an image close (Figure 2.11, upper right),

and the “deletion” operation is called an image open (Figure 2.11, middle right). By

increasing the size of the structuring element from two-by-two to some arbitrarily

large square (or other shape), it is possible to isolate increasingly larger groupings

of a particular material. For example, if all grass locations have been identified, one

can iteratively close and open the grass map (Figure 2.11, middle left), resulting in

the preservation of increasing areas of grass. Small grassy areas (urban lawns) are

deleted, and large grassy areas (fields) are preserved. Using the morphological open

and close operations, and changing the size and shape of the structuring element,

image features can be abstracted with “detection maps” or “material maps” as its

input. The “dilation” operation (Figure 2.11, lower right) adds a layer of pixels to

each object, and makes them look “fatter”. The “remove” operation (Figure 2.11,

lower left) “outlines” the objects. Dilation is used to increase the visual appeal of the

major buildings object map, and the remove operation is used to outline the objects

to create visually appealing GIS layers.
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2.4.3 Measuring Accuracy. In this thesis, the “ground truth” is a binary

spatial object map indicating the locations of a particular material. It is tempting to

consider it to be a single class where binary “true” is a success and binary “false”

is a failure. This, however, fails to recognize that “false” is a success as well. The

accuracy calculation will instead be thought of as a two class problem with classes

“true” and “not true”. The Non Equal Weighted Accuracy (NEWA) is used to assess

accuracy as shown in Figure 2.12.
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III. Methodology

Chapter III details the process of converting a hyperspectral image into individual

GIS layers illustrated in Figure 3.1. The four procedural steps are spectral

analysis (Figure 3.3), creating the initial object maps (Figure 3.10), spatial analysis

(Figure 3.12), and finalizing the GIS layers (Figure 3.15). An object map is a binary-

valued spatial representation of the hyperspectral scene, where the binary “true”

indicates presence of a particular material or object type. The initial object map is

intended to show the spatial location of a particular material or object type where

the material might be “vegetation”, “asphalt”, or any material that may contribute

information to developing the final GIS layers. One material that may be of interest

that is not included in this process is “water”. It is not included because it does not

exist in sufficient quantities in the hyperspectral scene to warrant a separate “water”

GIS layer.

Spectral analysis is accomplished with a Self-Organizing Map (SOM) followed

by segmentation of the SOM to determine its topology. Each time the SOM is seg-

mented, the result is a SOM segmentation. A SOM segmentation is a binary-valued

representation of the SOM that identifies the processing elements (PEs) that corre-

spond to a particular material. The SOM segmentation is a partial classification of

the SOM PEs. It is not necessary to completely classify the PEs because not all of

the PEs contribute useful information to the final GIS layers. The difference between

an object map and a SOM segmentation is their use. An object map has the spatial

resolution of the hyperspectral image and shows the locations of in-scene materials.

A SOM segmentation is a matrix with the same dimensions as the SOM PE lattice

showing the PEs that are labeled with the particular material type. Each SOM seg-

mentation is used to produce one temporary object map. The temporary object map

is used for spatial scene verification (see Figure 3.1, spectral analysis). During spatial

scene verification, the size of the SOM region being segmented is adjusted using a

threshold until the material of interest is shown on the temporary object map.
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Figure 3.1: The process flow diagram to convert a hyperspectral image into GIS
layers.
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After spectral analysis, each of the resulting SOM segmentations is used to

create an initial object map. This step is the transition step from spectral analysis to

spatial analysis. The initial object maps are the inputs to the spatial analysis process.

Spatial analysis uses the initial object maps and performs logical and morpho-

logical operations, and the road finding algorithm. Spatial analysis results in a set

of final object maps. It needs to be emphasized that the final object maps do not

correspond one-to-one with the input initial object maps for two reasons. First, there

are two more final object maps than initial object maps because the spatial analysis

process abstracts two new object maps from the input initial object maps. Second,

some of the final object maps are not labeled the same as the input object maps

because the spatial analysis process abstracts the meaning of the map. For example,

the “rooftop” initial object map becomes the “buildings” and “major buildings” final

object map.

Once the final object maps are prepared, the GIS layers are finalized by applying

a color, “outlining1” the objects to emphasize their shape, and creating a transparency

mask so the GIS layers can be overlayed on a false color composite of the hyperspectral

image.

3.1 Process Inputs

The process is designed to operate on a hyperspectral image cube. The image

cube needs to contain both spectral and spatial information, as shown in Figure 3.2.

It is assumed that the needed pre-processing steps to prepare the hyperspectral im-

age for algorithmic analysis are complete. Some of the pre-processing steps might

be resampling, atmospheric correction, and adjusting for the angle of the sun [20].

Pre-processing is dependent on the sensor platform, sensor noise, the hyperspectral

imager, and multiple other variables. The process is unique in every situation, and

is accomplished prior to spectral and spatial processing. Section 4.1.0.4 further de-

1“Outlining” is accomplished with a morphological remove operation.
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Hyperspectral Image Cube

Figure 3.2: This is an example of a hyperspectral image cube used in the subse-
quently described process. It contains both spectral and spatial information.

tails the specific pre-processing steps used to create Figure 3.2. Once the image is

prepared, it is used in the spectral analysis process that follows.

3.2 Spectral Analysis

The flow diagram for spectral analysis is shown in Figure 3.1. A SOM is used

as the primary vehicle for spectral analysis. The SOM is then segmented to reveal its

topology. First, the normalized difference vegetative index (NDVI) is used to create

two SOM segmentations using two different thresholds. The two segmentations can be

thought of as confidence limits. The NIR scatter tree identification algorithm is used

in combination with NDVI to create one SOM segmentation, and user-selected exem-

plar spectra are used to create one SOM segmentation for “rooftop” and “roadway”

materials. A temporary object map is created for each SOM segmentation and is used

in spatial scene verification before proceeding. During the spatial scene verification

process, a temporary object map is viewed by a user and the ℓ2–norm threshold for the

SOM segmentation is manually adjusted until the material of interest is maximized

and false positives minimized.

It is useful during spatial analysis to have a “non-tree vegetation” object map.

The “tree” SOM segmentation and the two “vegetation” SOM segmentations are

combined to produce two “non-tree vegetation” SOM segmentations. The result is
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Figure 3.3: This is the spatial flow diagram to convert a hyperspectral image into
SOM segmentations. The six light blue SOM segmentations are outputs.
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seven SOM segmentations, six of which are outputs of the spectral analysis process.

In Figure 3.3, the six output SOM segmentations in light blue boxes are labeled

“vegetation (NDVI > 0.3) SOM”, “non-tree vegetation (NDVI > 0.3) SOM”, “non-

tree vegetation (NDVI > 0.5) SOM”, “tree SOM”, “rooftop SOM”, and “roadway

SOM”. The seventh SOM segmentation in a dark blue box that is not an output of

the spectral process is labeled “vegetation (NDVI > 0.5) SOM”. It is not an output

because it is not used during spatial analysis. It is only used to create the “non-

tree vegetation (NDVI > 0.5) SOM”. The output is robust in the sense that minor

variations in the size of the segmented regions is compensated for during spatial

analyis.

3.2.1 Self-Organizing Map (SOM). A SOM organizes the spectra from a

hyperspectral image. The SOM requires seven input training parameters: the size of

the SOM PE lattice, the number of learning schedule decay steps, the learning rate

max and min, the neighborhood function max and min, and the number of training

steps. The SOM is inspected for convergence by randomly selecting one band, col-

orizing it according to PE value, and displaying the band. The SOM band should

have regions of similar colors indicating the preservation of the topological neighbor-

hood and the colors should have a gradation indicating the spectra are organized in

an gradual ascending or descending pattern as shown in Figure 3.4. The topological

neighborhood of the SOM is segmented into separate “SOM segmentations”, one for

each material of interest, and starting with NDVI.

3.2.2 Normalized Difference Vegetation Index. The NDVI is calculated

for each of the processing elements in the SOM. Table 2.1 lists the range of possible

NDVI values, and two of them (NDVI > 0.3 and NDVI > 0.5) are used as “confidence

limits” to create two “vegetation” SOM segmentations. Figure 3.5 shows the results of

applying NDVI to the SOM and setting a threshold to isolate one of the “vegetation”

SOM segmentations. The NIR scatter algorithm is next used to segment the “tree”

neighborhood of the SOM.
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Final Self-Organizing Map, Band 100

Figure 3.4: A self-organizing map (SOM) that reaches convergence is character-
ized by its topological neighborhood preservation, which is visualized by coloring the
processing elements of a randomly chosen band of the SOM (above). Topological
neighborhood preservation is evidenced by the “regions” and smooth gradations of
color.
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Figure 3.5: An example of NDVI applied to the SOM (left) and setting a
threshold from Table 2.1 (right).

3.2.3 NIR Scatter Tree Identification. The process to locate trees is based

on analysis of the NIR region of the spectrum. Spectral analysis as a means to identify

trees is referenced in the literature, but this particular method is a novel approach

that was developed for this thesis2. For this reason, it is explained in detail below. It

needs to be noted that this technique works only in combination with NDVI, because

this method also identifies non-tree PEs (in the SOM) and pixels (in the hyperspectral

image).

Figure 3.6 shows the segment of the spectrum that is used to classify trees.

The maple tree endmember spectra used to simulate the hyperspectral scene exhibit

less NIR scatter than the urban grass. This difference in NIR scatter is exploited to

separate tree from grass spectra. The spectral region 0.951–1.247µm is normalized

over the range, and then the standard deviation of the result is calculated.

The NIR scatter is calculated for each PE in the SOM, and the NIR scatter

values vary between 0 and 0.2059. NDVI is applied to each PE to remove “non-tree”

PEs from consideration, and then the “tree” SOM segmentation is used in two ways.

2The analysis of the NIR scatter is motivated by a literature search that indicated this is possible,
however subsequent detailed search has not revealed the original source of this method. The method
developed for this thesis is novel because it was created without source material.
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Figure 3.6: Trees are identified using the NIR scatter tree identification region
(thick red line) between wavelengths 0.951–1.247µm. Urban grass (light green line)
exhibits a larger amount of NIR scatter than maple tree leaves (dark green line). This
variation is exploited to segment the “tree” neighborhood of the SOM.

False Color Image NIR Scatter Algorithm Results

Figure 3.7: Applying NIR scatter to a hyperspectral image (right image) demon-
strates the utility of the NIR scatter tree ID method. The false color composite
(left image) of the hyperspectral image is shown for comparison. This comparison
demonstrates the usefulness of the NIR scatter tree ID algorithm.
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Table 3.1: Interpretation of logical deletion.

Roadway Fields Final Fields
Object Map Object Map Object Map

false false false

false true true

true false false

true true false

First, the NIR scatter threshold to separate “tree” from “non-tree” is determined by

plotting the ordered NIR scatter values and calculating the maximum of the derivative.

A temporary object map is created from the “tree” SOM segmentation for visual

scene verification. Visual scene verification can also be used to manually adjust the

threshold to improve the tree temporary object map. To verify the results, the NIR

scatter tree algorithm (and NDVI) are applied to an example hyperspectral image

(Figure 3.7, left image), and a temporary object map used for spatial scene verification

is created (Figure 3.7, right image). Figure 3.7 demonstrates the applicability of the

NIR scatter tree algorithm. Next, the “vegetation” and “tree” SOM segmentations

are used to create two “non-tree vegetation” SOM segmentations (see Figure 3.3).

3.2.4 “Non-Tree Vegetation” SOM Segmentations. In Figure 3.3), the two

“non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)” SOM segmentations are created

by logically “deleting” (see Table 3.1) the “tree” SOM segmentation from each of the

“vegetation (NDVI > 0.3 and NDVI > 0.5)” SOM segmentations. This process is

shown in Equation 3.1.

(Non-Tree Vegetation SOM) = (Vegetation SOM)− (Tree SOM) (3.1)

This completes the segmentation of the vegetative topology of the SOM. The

next step is to segment non-vegetative materials of interest. The approach to seg-
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menting the non-vegetative topology is slightly different than that for the vegetative

topology. In the new approach, the user selects exemplar spectra from the false color

composite of the hyperspectral image, and the exemplar spectra are used to locate the

SOM topological neighborhood for surrounding the exemplar spectra. The methodol-

ogy is modular and any materials of interest may be selected by the user and developed

into GIS layers. In this thesis, the scene content limits the needed material selection

to “rooftop” and “roadway” materials.

3.2.5 “Rooftop” and “Roadway” SOM Segmentations. It is assumed that

a-priori knoweldge of endmember spectra, a spectral database, and specific scene

knowledge is not available. User input is used to select exemplar spectra for materials

of interest to further segment the SOM. The process to create a SOM segmentation

from an exemplar spectra is illustrated in Figure 3.8. The false color composite

of the hyperspectral image is displayed (Figure 3.8 step 1) and the one or more

exemplar spectra are selected (Figure 3.8 step 2). The ℓ2–norm is calculated between

the exemplar spectra (or average of multiple exemplar spectra) and each SOM PE

(Figure 3.8 step 3). A maximum allowable ℓ2–norm distance threshold is set resulting

in an initial SOM segmentation (Figure 3.8 step 4). The initial SOM segmentation

is expected to be a contiguous region of adjacent PEs because of the topological

neighborhood preservation property the SOM. The contiguous region may overlap

PEs that are included in other SOM segmentations, which results in PEs with multiple

labels. However, in this thesis the choice was made to make “roadway”, “rooftop”,

“tree”, and “non-tree vegetation” SOM segmentations mutually exclusive by logically

“deleting” (see Table 3.1) each of the previous SOM segmentations (Figure 3.8 step 5).

A temporary object map (Figure 3.8 step 6) is used to manually adjust the ℓ2–norm

threshold, and steps 3-6 are repeated until the temporary oject map maximizes the

material identification and minimizes the false positives. The results are the two

“rooftop” and the “roadway” SOM segmentations shown in Figure 3.3.
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1. False Color Image 2. Exemplar Spectra (121, 359)

3. ℓ2–norm Between PEs 4. Thresholded SOM Segment

5. Mutual Exclusion 6. Spatial Scene Verification

Figure 3.8: This is the process to create a SOM segmentation from user input.
1. The user views a false color image of the hyperspectral scene. 2. User selects an
exemplar spectra. 3. The ℓ2–norm between the exemplar spectra and each SOM PE is
calculated. 4. The user sets an initial threshold. 5. Previous SOM segmentations are
removed to make them mutually exclusive. 6. The temporary object map is viewed by
the user and used to adjust the threshold. Steps (2-6) are repeated until a satisfactory
object map is created.
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3.2.5.1 Summary of the Spectral Analysis Process. The spectral anal-

ysis process used NDVI to create two “vegetation” SOM segmentations. The NIR

scatter tree identification algorithm, in combination with NDVI, produced a “tree”

SOM segmentation, which is then logically “deleted” from the two “vegetation” SOM

segmentations to produce two “non-tree vegetation” SOM segmentations. Four of

these five vegetation-related SOM segmentations, the “vegetation (NDVI > 0.3)”

SOM segmentation, “non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)” SOM seg-

mentations, and the “tree” SOM segmentation are outputs of the spectral analysis

process. Non-vegetative SOM segmentation is accomplished using user-selected ex-

emplar spectra. The ℓ2–norm is calculated between the SOM PEs and the exemplar

spectra and the ℓ2–norm threshold used to isolate a material neighborhood is man-

ually adjusted as in Figure 3.8. The results is the “rooftop” and “roadway” SOM

Segmentations that are outputs of the spectral analysis process.

There are six SOM segmentations that result from the spectral analysis process,

as shown in Figure 3.3. They are labeled “vegetation (NDVI > 0.3)”, “non-tree veg-

etation (NDVI > 0.3)”, “non-tree vegetation SOM (NDVI > 0.5)”, “tree”, “rooftop”,

and “roadway” SOM segmentations. One way to visualize the SOM topological neigh-

borhood is to assign a color to four of the SOM segmentations and overlay them as

shown in Figure 3.9. In the next step, the six SOM segmentations are used to create

six initial object maps.

3.3 Create the Initial Object Maps

Each of the six SOM segmentations that are output from spectral analysis are

used as inputs to the create the initial object maps step. The process is illustrated

in Figures 3.10 and 3.11. Six object maps with the same spatial resolution as the

hyperspectral image are created, one for each SOM segmentation.

Each pixel of the hyperspectral image (Figure 3.11 step 1) is sampled in order,

and the nearest neighbor PE in the ℓ2–norm sense is located in each of the six SOM

segmentations (Figure 3.11 step 2). If the sample lies in the binary “true” region of the
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SOM Neighborhood Topology

Roadway

Non-Tree Vegetation

Rooftops

Tree

Figure 3.9: Four of the SOM segmentations resulting from spectral analysis are
mutually exclusive: “roadway”, “rooftop”, “tree”, and “non-tree vegetation (NDVI >
0.3)”. They are each given a color and overlaid, producing this topological view of
the SOM neighborhoods.
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Figure 3.10: This is the process flow diagram for the create the initial object maps
step. The nearest neighbor PE (in the ℓ2–norm sense) for each SOM segmentation is
located for each sample pixel of the hyperspectral image. The spatial location of the
sample pixel is marked with the binary “true” or “false” in the corresponding initial
object map, depending on the binary state of the SOM segmentation. One example
SOM segmentation is shown in Figure 3.11.
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1. Sample Pixels in Order 2. Locate Nearest Neighbor 3. Object Map in Progress

Figure 3.11: An object map is created by selecting each pixel (1) and locating its
nearest neighbor in the ℓ2–norm sense in the SOM segmentation (2). If the nearest
neighbor is a binary “true”, then the corresponding object map is marked “true” (3).
The result is a complete object map showing the location of a particular material
type. Steps 1-3 are repeated for every pixel of the hyperspectral image.

SOM segmentation, the sample’s spatial location is set to binary “true” in the object

map that corresponds to the SOM segmentation (Figure 3.11 step 3). Steps 1-3 are

accomplished for each of the six input SOM segmentations. The results are six initial

object maps where each object map corresponds to one input SOM segmentation. The

initial object maps are the outputs of the create the initial object maps step. They

are next used in the spatial analysis process.

In summary, six initial object maps are created from six SOM segmentations.

The initial object maps are the inputs to and form the basis of the spatial analysis

process. Before spatial analysis is discussed, it is important to emphasize why the

transition from spectral to spatial analysis is critical.

3.4 Transitioning from Spectral to Spatial Analysis

In traditional “pure” spectral analysis where minimal or no spatial analysis is

accomplished, this is the end of the classification process. The goal of traditional

spectral analysis is maximizing the correct labeling of hyperspectral image pixels as

compared with the “ground truth” labeling provided with test images. Once each

pixel in the hyperspectral image has a label, the accuracy of the labeling is calcu-

3-16



lated. The quality of the algorithm is assessed to be proportional to the accuracy. A

higher classification accuracy insinuates a better algorithm. There are two problems

with this understanding of accuracy. First, the “ground truth” hyperspectral image

labeling rarely gives pixels more than one label. Mixed pixels are usually labeled with

their dominant spectra. A partially tree-occluded building pixel might be labeled

“tree” or “asphalt shingle”, or dual-labeled “tree/asphalt shingle”. The significant

number of mixed pixels in an urban environment can lead to significant reductions in

accuracy calculations despite correct labeling. Second, the dominant spectra labeling

approach is in contrast to an abstract understanding of the scene content that requires

some pixels to have multiple labels. Roadways that are occluded by tree foliage need

to be labeled both “roadway” and “tree”. Multiple labels reduces a pixel-level ac-

curacy calculation as well. Third, correctly labeling individual pixels may not yield

an abstract understanding of the scene. A “grass” pixel may be best described as a

“field pixel”.

In contrast to the traditional spectral analysis, this thesis continues the process

with spatial processing of the images. Since the spatial analysis results in an improved

pixel-level accuracy calculation, it is not necessary to maximize the accuracy during

spectral analysis. An empirically-determined estimate is that a 75% accuracy at the

end of spectral analysis yields excellent to outstanding results after spatial analysis.

The benchmark 75% accuracy also justifies the use of the SOM, which is itself an

abstraction of the high-dimensional hyperspectral image. It should be emphasized

that the significant spatial processing with logical and morphological operations after

spectral analysis is the unique contribution of this thesis to the state-of-the-art.

3.5 Spatial Analysis

The spatial analysis process shown in Figure 3.1 follows the create the initial

object maps step. A hyperspectral image input as to the spectral analysis process

results in six SOM segmentation maps that are processed into six initial object maps

in the create the initial object maps step. The six initial object maps are used during
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Figure 3.12: The process flow diagram for the spatial analysis process. The primary
flow is columnar, with steps 1-6 specifying the order of accomplishment. Six input
initial object maps (top row) are processed with a series of logical and morphological
operations into eight final object maps (labeled steps 1-6). A novel road finding
algorithm connects possible road segments under a significantly tree-occluded road
network.
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the spatial analysis process to produce eight final object maps. The final object maps

do not correspond one-to-one with the initial object maps because some entirely new

object maps are created from the initial object maps. The process of creating the

eight final object maps is shown in Figure 3.12. The ordering of the spatial operations

is important; however, the introduction of a massive set of dependency arrows in

Figure 3.12 makes the visualization of the process impossible to follow. The spatial

process steps are therefore enumerated in Figure 3.12 with labels “step 1”, “step 2”,

. . . , “step 6”.

In step 1, the “vegetation (NDVI > 0.3)” and the “tree” initial object maps

undergo morphological operations to produce the “vegetation” and “tree” final object

maps. The “non-tree vegetation (NDVI > 0.5)” initial object map undergoes mor-

phological operations and then logical operations to create the “fields” final object

map.

In step 2, the “parking areas” final object map is derived from the “roadway”

initial object map with iterative morphological operations. The “parking areas” final

object map is used in creating the “buildings”, “major buildings”, “road network”,

and “non-tree vegetation” final object maps in steps 3-6.

In step 3, the “rooftops” initial object map undergoes logical and morphological

operations to produce an intermediate “buildings” object map. The intermediate

“buildings” object map is operated on by morphological operations to produce the

“major buildings” final object map. The intermediate “buildings” object map is also

used in step 6 to create the “buildings” final object map. The change in the label from

“rooftops” to “buildings” is significant because the buildings object map contains

several buildings not identified during spectral analysis.

In step 4, the “roadway” initial object map undergoes morphological operations

and then logical operations to produce a “best known good roadway” object map

which is only used as in input to the road finding algorithm. The “best known good
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roadway” object map is a minimal set of roadway pixels with a high probability of

being correctly labeled.

In step 5, the road finding algorithm locates possible road connections despite a

significantly tree-occluded road network. The result is the “road network” final object

map.

In step 6, the “non-tree vegetation (NDVI > 0.3)” initial object map is processed

with morphological and logical operations to produce the “non-tree vegetation” final

object map. The intermediate “buildings” object map undergoes logical operations to

produce the “buildings” final object map.

The spatial analysis process converts the six input initial object maps into eight

final object maps in six steps that are labeled in Figure 3.12. Steps 1-6 are detailed

below.

3.5.1 Step 1: The “Vegetation”, “Tree”, and “Fields” Final Object Maps.

In step 1, the “vegetation (NDVI > 0.3)”, “tree”, and “non-tree vegetation (NDVI >

0.5)” initial object maps are processed into the “vegetation”, “tree”, and “non-tree

vegetation” final object maps as shown in Figure 3.12. The morphological and logical

operations used to create each of the three final object maps are detailed below.

The “vegetation (NDVI > 0.3)” initial object map undergoes a morphological

close operation with a 2 × 2 structuring element (SE). The size of the SE is chosen

to preserve roadways. Roadways are a key distinguishing feature of the scene that a

person might use to mentally “line-up” two maps. The “in-scene” roadways are, on

average, 3 to 5 pixels wide. Therefore, an SE that is smaller than a typcal roadway in

length and width does not remove a roadway, and the basic structure of the roadways

are present after the morphological close operation. The result is the “vegetation”

final object map.

The “tree” initial object map is closed with SEs that vary in size to correspond

to the minimum and maximum expected size of an “in-scene” maple tree. The trees
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are estimated to be at least three pixels in diameter. The accuracy of the “tree”

object map as compared to “ground truth” is calculated for an n × n SE size where

n = 1, 2, . . . , 5. The results are presented in Table 4.6. A 3× 3 SE is selected because

it yields the highest accuracy as compared to “ground truth” and because it provides

a visually appealing final object map. The “tree” initial object map undergoes a

morphological close with a 3× 3 SE resulting in the “tree” final object map.

The “non-tree vegetation (NDVI > 0.5)” initial object map undergoes iterative

morphological open and close operations, with an n × n SE where n = 5, 6, . . . , 20.

The starting and ending size of the SE are chosen in relation to the spatial size of

“in-scene” fields. The urban backyard or front yard lawn is less than or equal to n = 5

pixels. The largest field is larger than n = 20 pixels. If the SE size is specified smaller

than 5 pixels on a side, all of the urban lawns that are clustered together turn the

scene into one very large field. This is not a desirable situation. The “fields” object

map is then processed with a logical operation. The “roadway” initial object map is

logically deleted (see Table 3.1) from the “fields” object map resulting in the “fields”

final object map.

The results of step 1 are three final object maps. They are the “vegetation”,

“tree”, and “fields” final object maps. Step 2 creates the “parking areas” final object

map from the “roadway” initial object map using iterative morphological operations

in a similar fashion to creating the “fields”object map.

3.5.2 Step 2: The “Parking Areas” Final Object Map. In Figure 3.12

step 2, the “roadway” initial object map is processed into the “parking areas” final

object map. The morphological operations used to create the map are detailed below.

The “roadway” initial object map undergoes iterative morphological open and

close operations, with an n×n SE where n = 2, 3, . . . , 10. The starting size SE, n = 2,

is the smallest SE that may be used in morphological operations. The ending size of

the SE is chosen in consideration of the spatial size of the “in-scene” parking areas.
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The parking areas are larger than n = 10 pixels on a side. The result of this process

is the “parking areas” final object map.

The “parking areas” final object map is created prior to the “road network”

final object map assuming that the two object maps are mutually exclusive. Mutually

exclusive here means that the road finding algorithm assumes that roadways do not

cross parking areas. If a road segment passes through a parking area, the road finding

algorithm (as implemented) will not find the road segment.

3.5.3 Step 3: The “Major Buildings” Final Object Map. In Figure 3.12

step 3, one initial object map is processed into one final object map. An intermediate

object map used during step 6 is created. Figure 3.12 shows the conceptual splitting

of step three into two pieces. First, the “rooftop” initial object map is processed

with logical operations and then morphological operations to produce an intermediate

“buildings” object map. In this step, the intermediate “buildings” object map is

processed with morphological operations to produce the “major buildings” final object

map. In step 6, the intermediate “buildings” object map is processed with logical

operations to produce the “buildings” final object map. The morphological and logical

operations used to create the intermediate “buildings” object map and the “major

buildings” final object map are detailed below.

3.5.3.1 The Intermediate “Buildings” Object Map. The intermediate

“buildings” object map is used to create the “buildings” and “major buildings” final

object maps in steps 3 and 6, respectively. The intermediate “buildings” object map is

created through the use of a Negative Image Mask (NIM) in conjunction with logical

and morphological operations.

3.5.3.2 The Negative Image Mask. The NIM is, conceptually, where

one would not expect to find a building. It is constructed with logical operations

followed by a morphological operation. A logical “or” operation is used to “add”

the “vegetation (NDVI > 0.3)” and “roadway” initial object maps, and the “fields”
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and “parking areas” final object maps. The result of the logical “or” operation is

morphologically closed with a 3 × 3 SE, resulting in the NIM. The size of the SE is

chosen based on the approximate minimum size of an “in-scene” house. The smallest

size house is estimated at 3×3 pixels. In the final step, the NIM is logically “inverted”

and “added” to the “rooftops” initial object map with a logical “or” operation. The

result is the intermediate “buildings” object map.

The reason a NIM is used rather than operating directly on the “rooftops”

initial object map is to preserve information about buildings. For example, logically

“deleting” (see Table 3.1) vegetation from the “rooftop” initial object map would

partially remove some tree-occluded rooftops. This is the reason the “tree” final object

map is not “added” to the NIM. Another example is the morphological operation. If

the morphological close on the NIM is replaced instead with a morphological open

on the “rooftop” initial object map, the result is again the deletion of some rooftop

pixels. This happens because some of the rooftop pixel clusters are smaller than the

SE, a situation that happens when a rooftop is occluded by tree foliage. The effect of

using the NIM concept is that the logical and morphological operations do not occur

on the object map and valuable rooftop information is retained.

By combining the inverse of the non-building object maps with the “rooftop”

initial object map, the “rooftop” initial object map now has all of the information that

is known about in-scene buildings. It is therefore relabeled “rooftop” to “buildings”.

The result is next processed with morphological operations.

3.5.3.3 Intermediate “Buildings” Object Map. The last step to com-

plete the intermediate “buildings” object map is to perform one morphological oper-

ation on the map. The map is morphologically opened with a 3× 3 SE. The size of

SE is based on the “in-scene” minimum size of a building where that size is at least

three pixels on a side. The result is the intermediate “buildings” object map. This

map is used next to create the “major buildings” final object map, and in step 6 to

create the “buildings” final object map.
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3.5.3.4 Creating the Final Object Map. The intermediate “buildings”

object map is processed with three morphological operations. First, the map is mor-

phologically opened with a 7 × 7 SE. This size is chosen to delete the “in-scene”

houses. The maximum house size is estimated to be six pixels on a side. The SE is

guaranteed to delete houses while leaving any major buildings that are larger than

the SE. Second, the map is morphologically dilated with a 5× 5 SE. This SE size is

chosen because it adds two pixels to the edges of the remaining major buildings. This

operation is purely to improve the visual appeal of the major buildings map. The

“fatter” buildings show up better when overlaid on a scene. The third operation is

a morphological close with a 3× 3 SE. The size is chosen to be significantly smaller

then the first open operation, in order to least affect the shape of the buildings. Its

effect is to “close” any “holes” in the major buildings objects that are smaller than

the SE in size, and resuls in a building object that does not have “holes” in it. The

purpose is also purely for aesthetic appeal. Complete and uniform objects are visually

more appealing and less disruptive to visual continuity. The result of these logical

and morphological operations is the “major buildings” final object map.

3.5.4 Step 4: The “Best Known Good Roadway” Object Map. In Figure 3.12

step 4, the “roadway” initial object map is processed into the “best known good

roadway” object map. The “best known good roadway” object map is used only in

step 4 with the road finding algorithm. The road finding algorithm finds possible

road connections and adds them to the “best known good roadway” object map. The

algorithm, as implemented, never removes non-road segments. For this reason, if the

“best known good roadway” object map contains too many non-roadway pixels (false

positives), the result is that many road connections are made that do not actually

exist. For this reason, the “best known good roadway” object map is a significant

reduction of the “roadway” initial object map using morphological operations followed

by logical operations.

3-24



3.5.4.1 Morphological Operations. The initial roadway object map is

reduced using one morphological open operation for each SE where the SE sizes are

2×1, 1×2, 2×2 northwest-southeast diagonal, 2×2 northeast-southwest diagonal, and

then 3× 3. Previously created object maps are next removed with logical operations.

3.5.4.2 Logical Operations. The “best known good roadway” object

map is operated on by a logical “deletion” (see Table 3.1) to further remove non-

roadway pixels. The “parking areas” and “major buildings” final object maps are

logically “deleted” from the object map. The result is labeled the “best known good

roadway” object map in Figure 3.12. The “best known good roadway” object map is

a minimal roadway surface object map. It is used directly in the next step to make

possible roadway connections.

3.5.5 Step 5: The “Road Network” Final Object Map. In Figure 3.12 step 5,

the “best known good roadway” object map is processed into the “road network” final

object map. The road finding algorithm first constructs a NIM as in Section 3.5.3.2.

The NIM is gradually “pealed” to reveal possible road connections, and the possible

road connections are added to the “best known good roadway” object map.

3.5.5.1 The Negative Image Mask. The details of constructing a NIM

are discussed in Section 3.5.3.2. The concept is to build the NIM from non-roadway

object maps that have been created in steps 1-3. The NIM is constructed with the

“non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)” initial object maps, “fields”,

“parking areas”, “major buildings” final object maps and the intermediate “buildings”

object map. The reason they are listed in this order is that they are logically “deleted”

(see Table 3.1) in the reverse order during the road finding portion of the algorithm.

The last step is to morphologically close the NIM with a 2× 2 SE. The size of the SE

is selected so that roadways, which are approximately three to four pixels in width,

are not removed from consideration.
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Inputs:

‘‘Best Known Good’’ Roadway Object Map

NIM

‘‘NIM Threshold Max’’

Start:

roadway = ‘‘Best Known Good’’ Roadway Object Map

[roadway_columns,roadway_roads] = size(roadway)

NIM_threshold = ‘‘NIM Threshold Max’’

% 15 is experimentally determined number of iterations

% to uncover all roads.

for index = 1:15

% threshold is experimentally determined

for NIM _threshold = 0:NIM_threshold_max

% iterate through all M,N pairs of pixels in the roadway map

for M = 1:roadway_columns

for N = 1:roadway_rows

% If the pixel is a roadway

if roadway(M,N) == ‘‘true’’

% find the next roadway pixel

[M_next, N_next] = find_next_roadway_pixel(roadway,M,N)

% if there is at least one pixel distance exists

if sqrt((M-M_next)^2 + (N-N_next)^2) > 1

% Compare the SUM to threshold

if sum(NIM(M,N,M_next,N_next)) < NIM_theshold

draw_roadway(roadway,M,N,M_next,N_next)

end

end

end

end

end

end

end

Figure 3.13: The pseudocode for the road finding algorithm. This algorithm uses a
negative image mask and a “best known good” roadway object map to produce the
road network final object map.
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1. Initial Roadway Map 2. NIM Threshold = 0

3. Possible Roads 4. Open 2× 2 SE

5. Possible Roads 6. NIM Threshold = 2

7. Possible Roads 8. Open 3× 3 SE

Figure 3.14: This sequence illustrates the iterative process the road finding
algorithm uses to build the roadway network layer. The negative image mask
(right column) is gradually “pealed” while the possible road connections are made
on the “best known good roadway” object map (left column).
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3.5.5.2 The Road Finding Algorithm. The road finding algorithm

operates iteratively. It takes as inputs the “best known good roadway” object map,

the NIM, and a NIM threshold max. All pixels marked “true” in the “best known

good roadway” object map are assumed roadway pixels. All the pixels marked as

“true” in the NIM are assumed non-roadway pixels. The pseudocode is presented in

Figure 3.13. A pictorial view of the process is in Figure 3.14.

First, the road finding algorithm considers every pair of roadway pixels that are

separated by a minimum euclidean distance of at least one pixel. For each pair, it

calculates the number of non-roadway pixels between those two same locations from

the NIM3. Second, the algorithm compares the sum of the non-roadway pixels to a

NIM threshold. Based on the results of the comparison, the algorithm draws a possible

road connection between the roadway pixels on the “best known good roadway” object

map. Third, the algorithm increases the NIM threshold by one. If the maximum NIM

threshold is reached, then the algorithm resets the NIM threshold count and “peals”

information from the NIM.

The “pealing” process of removing information from the NIM warrants a brief

explanation. Once the NIM is constructed, “pealing” is accomplished in two ways.

First, a morphological open operation with the smallest possible SE (2 × 1 or 1× 2)

reduces stray pixels, and increases the number of possible road segments. The largest

size SE is experimentally determined to be 3 × 3 before the road finding algorithm

makes too many non-road network connections. Second, the NIM is re-created, but

with one less object map than before. The intermediate “buildings” object map is

one of the first not to be included when the NIM is re-created because it contains

several roadway pixels. The inclusion of the roadway pixels in the “buildings” object

map prevents the road finding algorithm from finding some possible road network

segments. Using morphological operations on the NIM and re-creating the NIM with

3An expansion of this algorithm is to calculate the number of roadway pixels between the pair of
pixels that the algorithm is considering. This could be used in a momentum calculation.
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less object maps “peals” the NIM, revealing an increasing number of possible road

segment connections to the road finding algorithm.

In summary, step 5 of the spatial analysis process results in a “road network”

final object map. It is derived from the “roadway” initial object map. The road

network algorithm has the largest number of parameters to tune than any part of the

spatial analysis process. The tunable parameters are the construction of the NIM,

the NIM threshold, and the order that information is “pealed” from the NIM. The

road algorithm is modular and lends itself well to improving the quality of the road

network produced. Some extension ideas include using a ruleset of how roads can

connect, morphological profiles, edge detection, linear regression, and multiple other

spatial processing techniques.

3.5.6 Step 6: The “Non-Tree Vegetation” and the “Buildings” Final Object

Maps. In Figure 3.12 step 6, the “non-tree vegetation (NDVI > 0.3)” initial object

map and the intermediate “buildings” object map are processed into their final forms.

The “non-tree vegetation (NDVI > 0.3)” initial object map undergoes two morpho-

logical operations followed by four logical operations. The two logical operations are

a morphological close with a 3×3 SE and then a morphological open with a 3×3 SE.

The close operation “fills in” the objects to make it them visually appealing, and the

open operation deletes stray clusters of pixels that distract the eye. The four logical

operations are deletion operations (see Table 3.1). The “road network”, “buildings”,

“parking areas”, and “fields” final object maps are deleted from the “non-tree vege-

tation (NDVI > 0.3)” initial object map.

The intermediate “buildings” object map undergoes one deletion operation. The

“road network” final object map is deleted, resulting in the “building” final object

map. The reason the road network is deleted from the buildings map is that they

are not mutually exclusive. The spectral similarity between asphalt rooftop shingles

and asphalt roadway resulted in some roadway pixels being included in the “rooftop”
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initial object map. The “road network” final object map is used to delete these stray

roadway pixels that also exist in the “buildings” final object map.

3.5.6.1 The Final Object Maps. The results of the spatial analy-

sis process and the six separate processing steps are eight final object maps: the

“vegetation”, “tree”, “non-tree vegetation”, “fields”, “buildings”, “major buildings”,

“parking areas”, and “road network” final object maps. These eight final object maps

are produced from six input initial object maps: “vegetation (NDVI > 0.3)”, “tree”,

“non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)”, “rooftop”, and the “roadway”

initial object maps. The six steps from initial to final object maps are a phased ap-

proach to accomplishing the spatial analysis process. The last task to complete is to

convert the eight final object maps into eight GIS layers.

3.6 Finalizing the GIS Layers

This is the last step in converting a hyperspectral image into abstract GIS layers.

The hyperspectral image from Figure 3.1 is processed spectrally to produce six initial

object maps, which are then processed spatially to produce eight final object maps.

Figure 3.15 illustrates the process of creating the eight finalized GIS layers from the

eight final object maps.

Each of the final object maps resulting from the spatial analysis process is turned

into a GIS layer with three steps. These steps increase the visual appeal of the object

maps, but do not change the content or improve the accuracy. First, a color is selected

for each map. Second, the object map undergoes a morphological remove4 operation

followed by a morphological dilation operation with a 3×3 SE. The remove operation

creates an “outline” of any objects in the object map, and the dilation operation

“thickens” the outline by one pixel on each side of the outline. An RGB “mask” is

created with the final object map and a mask color is selected.

4The morphological remove operation creates an outline of the objects in the image.
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Figure 3.15: This is the process flow diagram to convert a hyperspectral image into
multiple GIS layers (identified with yellow outlined boxes).
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When the mask and outline are used in conjunction with a transparency setting,

the maps can be overlaid over the original scene to show the locations of objects. These

overlays are the final GIS layers.

In summary, the process from Figure 3.1 to convert a hyperspectral image into

GIS layers is completely described. A hyperspectral image (Figure 3.2) is processed

spectrally (Figure 3.3) to produce six SOM segmentations. Spectral analysis is accom-

plished with a SOM (Figure 3.4). The SOM is segmented using NDVI (Figure 3.5),

the NIR scatter tree ID (Figure 3.6), and user input (Figure 3.8). The six SOM seg-

mentations are converted into six initial object maps (Figures 3.10 and 3.11). The

initial object maps undergo spatial processing (Figure 3.12) to yield eight final object

maps. Spatial analysis is accomplished using logical and morphological operations.

A novel road finding algorithm (Figures 3.13 and 3.14) is used to assemble the “road

network” final object map. The final object maps are then finalized into eight GIS

layers (Figure 3.15). With the process from hyperspectral image to GIS layers thus

described, it is applied to a synthetic hyperspectral image in Chapter IV.
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IV. Experimental Results and Analysis

Chapter IV presents the experimental results when the methodology developed

in Chapter III is applied to a synthetic hyperspectral image. The methodology

to convert the hyperspectral image into GIS layers is illustrated in Figure 3.1. Eight

GIS layers are created from the hyperspectral image in four steps. The four steps are

spectral analysis (Figure 3.3), creating the initial object maps (Figure 3.10), spatial

analysis (Figure 3.12), and finalizing the GIS layers (Figure 3.15). Each step of the

process presents the results generated in that step and an analysis of the results.

4.1 Process Inputs

The process input is the synthetic hyperspectral image represented in Figure 3.2.

The hyperspectral image is generated with a custom simulation software program

called the Digital Imaging and Remote Sensing Image Generation (DIRSIG) [37].

A satellite Red Green Blue (RGB) image (Figure 4.1, left image) was used as a

layout template to create a synthetic scene called Megascene1. The synthetic scene

is compared to a false color composite image (Figure 4.1, right image) in Figure 4.1.

The Megascene1 is simulated with the DIRSIG software to produce the hyperspectral

image (Figure 3.2). The simulation models atmospheric distortion, which necessitates

atmospheric correction.

4.1.0.2 The Digital Imaging and Remote Sensing Image Generation (DIRSIG)

Software. DIRSIG is a software program that was started in the late 1980’s at the

Rochester Institute of Technology (RIT) in Rochester, NY. The program predicts im-

ager radiance values using a physics model and ray tracing. The physics model takes

into account thermal characteristics, atmosphere properties and distortion, hyper-

spectral imager features and noise, the sensor platform, and the material types [37].

The DIRSIG modeler uses actual end-member spectra for in-scene materials, and cal-

culates the spectral response. The software is used by civilian, academic, and defense

agencies. The resolution of the hyperspectral image data is estimated to be approxi-

mately 1.5× 1.5m per pixel and is 400× 400 pixels in size. The hyperspectral image
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RGB Basis Image False Color Composite

Figure 4.1: The satellite RGB image (left) is compared to the false color com-
posite image (right) of the hyperspectral image. The satellite image was used
as a layout reference to create the layout of Megascene1, from which the hy-
perspectral image is generated. The similarities and differences are discussed in
Section 4.1.0.3.

is spectrally resampled to reflect a NASA/JPL AVIRIS acquired image. The layout

of Megascene1 scene differs slightly from the satellite image as shown in Figure 4.1.

4.1.0.3 Comparing the Satellite Image and Megascene1. The layout

of Megascene1 is based on the actual area surrounding the RIT campus. The RIT

campus, located at approximately lattitude 43◦ 12′ 50′′ and longitude −77◦ 12′ 60′′, is

shown in the left image of Figure 4.1. The right image of Figure 4.1 is a false color

composite of the hyperspectral image.

There are two significant discrepancies between the two images. First, the

running track is the traditional orange rubber material in the satellite image and it is

asphalt in Megascene1. Second, the large, light-colored building in the center of the

image does not have a courtyard in the satellite image, but it does in the Megascene1.

These discrepancies are significant because they affect the results when the results are

compared with the satellite image. In the final GIS layer for trees, the courtyard of
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the light-colored building contains trees. In the final GIS layer for the road network,

the running track is included as a roadway because it is the same asphalt material

as the roadways. It would normally not be included in the GIS layer if it were the

orange rubber material.

There are two notable similarities. First, the number of roads connecting to the

edges of the image (seven on the top, four on the right, five on the bottom, and five on

the left) are the same. Second, thre are five major buildings (six if the light-colored

central building is counted as two), two large field areas, and four separate parking

areas. These similarities are notable because they are used to verify the results of the

process.

The satellite RGB image (Figure 4.1, left image) is not used as an input to

the process, nor is it directly related to the data content of the hyperspectral image.

Before the process can begin, the synthetic hyperspectral image that results from

simulating the Megascene1 with the DIRSIG software needs to be atmospherically

corrected.

4.1.0.4 Atmospheric Correction. Empirical line correction is a tech-

nique to correct for atmospheric disturbances, which are dominated by linear distor-

tion effects. The DIRSIG software simulates atmospheric disturbances as part of its

physics model, and these disturbances removed prior to processing. Two materials

with known spectra were placed in the Megascene1 prior to simulation. The two ma-

terials are the two light-colored tarps that can be seen in the middle of the running

track in the left image of Figure 4.1.

Once the Megascene1 is simulated, linear regression is performed on the resulting

spectra for the two tarps and their known spectra. The result of the linear regression

is a gain and an offset value. Equation 4.1 is used to correct the hyperspectral

image spectra. Bands 105 to 107 and 140 to 150 are deleted due to scattering from

atmoshperic water. These bands correspond to wavelengths 1.38µm to 1.40µm and

1.82µm to 1.94µm. The last two bands, 209 and 210, with corresponding wavelengths
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2.48µm and 2.50µm, are removed because of high noise. Therefore, 194 bands remain

for analysis.

Reflectance = Gain× Radiance + Offset (4.1)

4.2 Spectral Analysis

The spectral analysis process flow is illustrated in Figure 3.3 and discussed in

Section 3.2. The hyperspectral input image (Figure 3.2) is processed with a self-

organizing map (SOM) to organize the image spectra. The normalized difference

vegetation index (NDVI), near infrared (NIR) scatter tree identification algorithm,

and user input are used to segment the converged SOM. The results of the segmenta-

tion process are six SOM segmentations. The six SOM segmentations are propogated

from the spectral analysis process to the next step, the create the initial object maps

step.

4.2.1 Self-Organizing Map. The SOM requires seven input training pa-

rameters before it can organize the spectra from the hyperspectral scene: the SOM

PE lattice size, the number of learning schedule decay steps, the learning rate max

and min, the neighborhood function max and min, and the number of training steps.

These input parameters are listed in Table 4.1. The processing elements (PEs) lattice

size (40× 40 PEs) contains two orders of magnitude fewer processing elements than

the spatial size of the hyperspectral image (400×400 pixels). This PE lattice size ex-

ponentially reduces processing time from days to hours. The number of decay steps,

initial and final learning rate (α), and the initial and final neighborhood function

update (σ) are “rule-of-thumb1” values that are known to provide good experimental

results [22]. The number of training steps is suitably large to ensure that the SOM

reaches convergence.

1In [7], the authors developed a parameter-less SOM (PLSOM). Choosing parameters is prone to
error, and their PLSOM may allow the SOM input parameter selection to be fully automated.
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Figure 4.2: The converged SOM presented in alternative U-matrix form showing
the “density” of pixels assigned to processing element (PE) where the density is
proportional to the brightness of the PE. The green “fences” are proportional in
brightness and thickness to the ℓ2–norm distance between adjacent PEs.
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Table 4.1: Listing of the SOM training parameters.

Variable Value

SOM Lattice Size 40× 40 PEs

Learning Schedule Decay Steps 20

Initial Learning Rate αinitial = 0.8

Final Learning Rate αfinal = 0.5× 10−4

Initial Neighborhood Function Update σinitial = 1

Final Neighborhood Function Update σfinal = 0.5× 10−4

Training Steps 6× 106

Band 100 of the SOM is randomly chosen to be examined, and each PE value is

assigned a color, resulting is Figure 3.4. The gradation of PE values (i.e. PE colors) is

a positive sign that the SOM has completed successfully. If the SOM were to converge

in a “twisted” state, the gradation of values would be significantly altered and not

appear uniform as in Figure 3.4. The converged SOM is presented in Figure 4.2 in

an alternative U-matrix form showing the “density” of pixels where the brightness of

a PE is proportional to density. The density is the number of pixels assigned to the

PE. The SOM has 40 × 40 or 1, 600 PEs. The hyperspectral image has 400 × 400

or 160, 000 pixels. There is, on average, 100 pixels/PE. 987 PEs have less than the

average number of pixels assigned, and 613 PEs have greater than (or equal to) the

average number of pxiels assigned. The maximum number of pixels assigned to a PE

is 830, and the minimum is 0. These SOM statistics indicate the SOM has converged

to a steady state. The green “fences” in Figure 4.2 are proportional in brightness to

the ℓ2–norm distance between adjacent PEs.

The gradation of PE values in band 100 of the SOM, the distribution of the

density, and the fences that outline contiguous topological neighborhoods indicate that

the SOM has converged successfully and is ready for segmentation. The segmentation

of the SOM topology involves NDVI, NIR scatter tree ID, and user input. The results
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are several SOM segmentations. A SOM segmentation is a binary valued matrix with

the same size as the SOM PE lattice where a logical “true” indicates presence of the

material of interest. For each material of interest, one or more segmentations are

created. First, vegetation is segmented using the NDVI.

4.2.2 Normalized Difference Vegetation Index. NDVI (see Section 2.2.9) is

applied to the converged SOM from Figure 4.2 resulting in Figure 4.3. Two NDVI

thresholds (NDVI > 0.3 and NDVI > 0.5) from Table 2.1 are used to create two

SOM segmentations. Table 2.1 indicates that the threshold (NDVI > 0.3) is the lower

confidence limit of the presence of vegetation, and the threshold (NDVI > 0.5) is

the “safe” confidence limit for the presence of vegetation. The ordered NDVI values

of the PEs in Figure 4.3 are plotted in Figure 4.4. The purpose of Figure 4.4 is to

visually inspect and the NDVI thresholds from Table 2.1 and support the two NDVI

thresholds (NDVI > 0.3 and NDVI > 0.5). Figure 4.4 is analyzed in relation to the

NDVI thresholds from Table 2.1.

1. NDVI > 0.8 a plateau in the plot at “definitely vegetation”.

2. NDVI > 0.5 a natural break that is indicates a possible dividing point between

healthy vegetation and grass that is starting to seness.

3. NDVI > 0.3 the “rule-of-thumb” for vegetation.

4. NDVI > 0.1 the soil break indicates that there are likely mixed grass and soil

spectra.

The results of this analysis point to the two thresholds (NDVI > 0.3 and NDVI > 0.5).

The next step is to create a temporary object map using the process from Figure 3.11

to visually verify the segmentations using each of the four SOM segmentation that re-

sult from each of the four NDVI thresholds under consideration. This is accomplished

in Figure 4.5.

The temporary object map for the threshold NDVI > 0.8 in the top right image

of Figure 4.5 does not encompass the vegetation content of the scene. The temporary
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Figure 4.3: The result when NDVI is applied to the converged SOM from Figure 4.2.
The color map has been adjusted to fade from green to black at the lower limit of
confidence, NDVI > 0.3. The brighter the pixel, the higher the confidence that it is
vegetation.
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Plot of Ordered NDVI Values
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Figure 4.4: This plot of the ordered NDVI values from Figure 4.3 is plotted with
each of the thresholds and theshold labels from Table 2.1.

object map for the threshold NDVI > 0.1 in the lower right image of Figure 4.5 marks

the large central building in the middle of the scene as vegetation. These two NDVI

thresholds (NDVI > 0.8 and NDVI > 0.1) are not good choices. The Non-Equal

Weighted Accuracy (NEWA) (see Section 2.4.3) for each of the four temporary object

maps in the right column of Figure 4.5 is calculated as compared to the “ground truth”

vegetation map. The results are in the middle column of Table 4.2. For comparison,

the NDVI is applied directly to the hyperspectral image. For each NDVI threshold,

the NEWA is calculated and listed in the right column of Table 4.2.

There are three conclusions drawn from Table 4.2.

1. The “rule-of-thumb” threshold, NDVI > 0.3, provides a lower confidence limit

of the presence of vegetation.

2. Using the SOM to identify vegetation improved the NEWA accuracy from 0.9608

to 0.9637 for NDVI > 0.8 and from 0.9806 to 0.9949 for NDVI > 0.5. Abstract-

ing information through a SOM was expected to lower the NEWA slightly.
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Figure 4.5: Each of the vegetation SOM segmentations (left column) are pro-
cessed into temporary object maps (right column) using the process from Fig-
ure 3.11. Green PEs and white pixels are binary “true” indicating the presence
of vegetation. The top right object map does not encompass the vegetation, and
the bottom right object map marks the large building in the center of the image
as vegetation. 4-10



Table 4.2: Listing of the NEWA for the temporary
object maps from Figure 4.5 (right column) as com-
pared to ground truth. NDVI is applied to the hyper-
spectral image resulting in the accuracies in the right
column.

Figure 4.5 (right column) NDVI applied to the

Threshold Temporary Object Maps Hyperspectral Image

NDVI > 0.8 0.9637 0.9608

NDVI > 0.5 0.9949 0.9806

NDVI > 0.3 0.8801 0.9175

NDVI > 0.1 0.5141 0.5155

3. The hyperspectral scene analyzed is simulated data, and these values need to

be cross-correlated with results from a real-data analysis.

The threshold NDVI > 0.1 does not meet the recommendation to have at least a 75%

accuracy as described in Section 3.4. Visual inspection of the upper right temporary

object map from Figure 4.5 negates using NDVI > 0.8 as a threshold. The conclusion

is that the thresholds NDVI > 0.3 and NDVI > 0.5 are reasonable values and are

therefore selected. The thresholds are used to create the vegetation NDVI > 0.3 and

NDVI > 0.5 SOM segmentations shown in the middle two images of the left column

of Figure 4.5. The SOM segmentations are later used during spectral analysis and

propogated to the create the initial object maps step.

Application of NDVI to the converged SOM (Figure 4.3) to produce two SOM

segmentations is complete. The two SOM segmentations are labeled “vegetation

(NDVI > 0.3 and NDVI > 0.5)” SOM segmentations, in the spectral process flow

diagram in Figure 3.3. The next step of the spectral analysis is to apply the NIR

scatter tree ID algorithm to segment the “tree” neighborhood of the SOM.

4.2.3 NIR Scatter Tree Identification. The NIR scatter tree ID algorithm

is described in Section 3.2.3. The NIR scatter is calculated for the hyperspectral
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Figure 4.6: The NIR scatter tree identification algorithm from Section 3.2.3 is
applied to the hyperspectral image and the resulting ordered NIR scatter values are
then plotted. The tree threshold is set at the maximum of the derivative of this plot
at NIR scatter value = 0.2.
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image from Figure 3.2 and then the ordered NIR scatter values are plotted as shown

in Figure 4.6. The maximum of the derivative of Figure 4.6 is the tree threshold

(Tree Threshold = 0.2).

The NIR scatter tree ID algorithm is applied to the converged SOM from Fig-

ure 4.2 and thresholded with the NIR scatter tree threshold. NDVI with thresholds

NDVI > 0.3 and NDVI > 0.5 are applied in order to separate the vegetative from

the non-vegetative PEs. This results in the two SOM segmentations shown in the left

two images of Figure 4.7. Using the process from Figure 3.11 to create a temporary

object map for spatial scene verification results in the right two images in Figure 4.7.

The temporary object map images in the right column of Figure 4.7 are very

similar. Both images correctly identify trees, and both contain the same non-tree

artifacts. The small rectangles in the right images of Figure 4.7 are actually grass

located in shadow of a building. The lower right image (corresponding to NDVI > 0.3)

appears to have identified more trees than the upper right image. Table 4.3 shows

the NEWA calculation for each of the tree temporary objects maps in Figure 4.7.

Table 4.3: This table compares the NEWA for each
of the “tree” SOM segmentations in the right column
of Figure 4.7.

Threshold NEWA Related Figure

NDVI > 0.5 0.7867 Figure 4.7, upper right image

NDVI > 0.3 0.8201 Figure 4.7, lower right image

Based on the accuracies in Table 4.3 and the qualitative assessment of the temporary

object maps in the right column of Figure 4.7, the “tree” SOM segmentation corre-

sponding to an NDVI threshold of NDVI > 0.3 shown in the lower right image of

Figure 4.7 is selected to be the final “tree” SOM segmentation used later in spectral

analysis and propogated to the create the initial object maps step. With the “tree”

SOM segmentation complete, the next step is to create the “non-tree vegetation”
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Figure 4.7: Green PEs and white pixels are labeled “tree”. The NIR scatter tree
ID algorithm from Section 3.2.3 is applied to the converged SOM (Figure 4.2), and
then thresholded based on Figure 4.6. NDVI is used to separate the vegetative
and non-vegetative SOM PEs using thresholds NDVI > 0.3 and NDVI > 0.5
resulting in two SOM segmentations (left column). The process in Figure 3.11 is
used to create the two temporary object maps for spatial scene verification (right
column). Green PEs and white pixels are “true” and black PEs and pixels are
“false” for “trees”.
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Figure 4.8: This is the graphical representation of Equation 3.1. The “tree”
SOM segmentation (middle column, repeated) is logically “deleted” from the
the two “vegetation” SOM segmentations (NDVI > 0.3 and NDVI > 0.5) (left
column). The results are the two “non-tree vegetation” (NDVI > 0.3 and
NDVI > 0.5) SOM segmentations (right column). Colored PEs are “true” and
black PEs are “not true” for the indicated material of interest.

SOM segments using the two “vegetation” SOM segmentations from the previous

step and the “tree” SOM segmentation from thsi step.

4.2.4 “Non-Tree Vegetation” SOM Segmentations. The two “non-tree veg-

etation (NDVI > 0.3 and NDVI > 0.5)” SOM segmentations shown in Figure 3.3 are

created using Equation 3.1. The process is shown graphically in Figure 4.8. The “tree”

SOM segmentation (Figure 4.8, middle column, repeated) is logically “deleted” (see

Table 3.1) from the two “vegetation (NDVI > 0.3 and NDVI > 0.5)” SOM segmen-

tations (Figure 4.8, left column) resulting in two “non-tree vegetation (NDVI > 0.3

and NDVI > 0.5)” SOM segmentations (Figure 4.8, right column).
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The “non-tree vegetation” SOM segmentations do not need spatial scene veri-

fication because the three SOM segmentations from which they are created are pre-

viously verified. The two “non-tree vegetation” SOM segmentations are propogated

to the create the initial object maps step. The next step is to have the user select

exemplar “rooftop” and “roadway” exemplar spectra, and use them to create the

“rooftop” and “roadway” SOM segmentations.

4.2.5 “Rooftop” and “Roadway” SOM Segmentations. The next step in the

spectral analysis process flow diagram shown in Figure 3.3 is to have the user select

exemplar spectra for rooftops and roadways as shown in Figure 3.8 and outlined in

Section 3.2.5. User input is simulated to select pixels (187, 305) and (155, 95) for

the “rooftop” exemplars, and (121, 359) for the “roadway” exemplar. Spatial scene

verification from Figure 3.11 is used to adjust the ℓ2–norm distance threshold for each

of the SOM segmentations starting with the “rooftop” SOM segmentation and ending

with the “roadway” SOM segmentation. The final “rooftop” SOM segmentation is

shown in the left image of Figure 4.9, and the corresponding verified spatial scene in

the right image of Figure 4.9. The final “roadway” SOM segmentation is shown in

the left image of Figure 4.10 and the corresponding verified spatial scene in the right

image of Figure 4.10.

It is important to adjust the ℓ2–norm threshold to encompass the majority of the

material without introducing extensive error. This is currently a “best judgement”

process; however, there is plenty of room for error since the spatial analysis phase

significantly improves the initial accuracies. The final rooftop and roadway ℓ2–norm

thresholds are listed in Table 4.4.

The results are the “rooftop” SOM segmentation and the “roadway” SOM seg-

mentation labeled in light-blue boxes in Figure 3.3 and shown in the left images of

Figures 4.9 and 4.10. The other light-blue boxes correspond to the previously created

“vegetation (NDVI > 0.3)”, “non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)”,

and “tree” SOM segmentations. These six SOM segmentations are the final spectral
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Rooftop SOM Segmentation

Verified Spatial Scene

Verified Spatial Scene

Figure 4.9: Exemplar spectra chosen with the process shown in Figure 3.8
in combination with spatial scene verification are used to adjust the ℓ2–norm
threshold resulting in the “buildings” SOM segmentation (left image). During
spatial scene verification, the threshold is adjusted while verifying the results in
the temporary object map (right image). The brown PEs and white pixels are
“rooftop” and the black PEs and pixels are “not rooftop”.

Table 4.4: Listing of ℓ2–norm thresholds for the
“rooftop” and “roadway” SOM segmentations

SOM Segmentation ℓ2–norm Threshold

Rooftop 0.1

Roadway 0.2

4-17



Roadway SOM Segmentation

Verified Spatial Scene

Verified Spatial Scene

Figure 4.10: Exemplar spectra chosen with the process shown in Figure 3.8 in
combination with spatial scene verification are used to set a ℓ2–norm threshold
resulting in the roadway SOM segmentation (left image). During spatial scene
verification, the threshold is adjusted while verifying the results in the spatial
object map (right image). The grey PEs and white pixels are “roadway” and the
black PEs and pixels are “not roadway”.
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analysis outputs that are propogated to the create the initial object maps step shown

in Figure 3.1. Four of the SOM segmentations were previously shown in Figure 3.9

to demonstrate the SOM characteristic of preserving the topological neighborhood.

4.3 Create the Initial Object Maps

Once spectral analysis is complete, the six SOM segmentations resulting from

spectral analyis are processed as shown in Figures 3.1 and 3.11 into six initial object

maps. The six initial object maps shown in Figure 4.11 are the outputs of the create

the initial object maps step. Once the initial object maps are created, the process

proceeds into the spatial analysis process of Figure 3.1.

4.4 Transitioning from Spectral to Spatial Analysis

Table 4.5: Listing of the initial object map accura-
cies.

Initial Object Mask NEWA Reference Figure

Vegetation NDVI > 0.3 0.9949 Figure 4.11, upper left

Tree NDVI > 0.5 0.8201 Figure 4.11, upper right

Non-Tree Vegetation NDVI > 0.3 0.7796 Figure 4.11, middle left

Non-Tree Vegetation NDVI > 0.5 0.8159 Figure 4.11, middle right

Rooftop 0.7783 Figure 4.11, bottom left

Roadway 0.8673 Figure 4.11, bottom right

Section 3.4 states that the recommended accuracy from the spectral analysis

process is 75%. Table 4.5 calculates the accuracy for each of the initial object maps

from Figure 4.11. In traditional spectral analysis, this would be the stopping point and

these accuracies would be the final reported accuracies. In [26], the author segments

an urban scene with a SOM and achieves an overall 80% accuracy. The accuracies

in Table 4.5 confirm these findings, with an 84.2% average accuracy. In order to

create the GIS layers, however, the initial object maps must be spatially processed.

As a by-product of the spatial analysis process shown in Figure 3.1, the “vegetation”
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Vegetation NDVI > 0.3 Tree

Non-Tree Vegetation NDVI > 0.3 Non-Tree Vegetation NDVI > 0.5

Rooftop Roadway

Figure 4.11: The six initial object maps that result from the create the initial object
maps step of Figure 3.1. They are created using the process shown in Figure 3.11 and
discussed in Section 3.3. They are used during spatial analysis to create eight final
object maps. White pixels are “true” and black pixels are “not true” for the indicated
object type.
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Figure 4.12: A comparison between the “vegetation (NDVI > 0.3)” initial
object map (left image), which undergoes a morphological close operation with a
2×2 SE to produce the “vegetation” final object map (right image). White pixels
represent “vegetation” and black pixels represent “not vegetation”.

final object map accuracy decreases. This is because the “vegetation” final object

map (Figure 4.11, upper left image) is “noisy” and “cluttered” and undergoes spatial

operations that sacrifice accuracy to increase its visual appeal and subsequently its

utility. The other five object maps show an improvement in the accuracy calculation.

The six initial object maps from Figure 4.11 are propogated to the spatial analyis step

of Figure 3.1. Spatial analysis results in eight final object maps.

4.5 Spatial Analysis

The spatial analysis process shown in Figures 3.1 and 3.12 result in eight final

object maps from the six input initial object maps shown in Figure 4.11. Spatial

analysis is accomplished in six steps, itemized below.

4.5.1 Step 1: The “Vegetation”, “Tree”, and “Fields” Final Object Maps.

Section 3.5.1 describes the process used in step 1 to operate on the “vegetation

NDVI > 0.3” initial object map (Figure 4.12, left image) to produce the “vegetation”
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final object map (Figure 4.12, right image). The “vegetation” final object map is

propogated forward to the finalize GIS layers step.

Section 3.5.1 describes the process used to operate on the “tree” initial object

map to produce the “tree” final object map. Figure 4.13 demonstrates the results

of applying three different-sized SEs (2 × 2, 3 × 3, and 4 × 4) on the “tree” initial

object map (Figure 4.13, upper right image). Ten different-sized SEs are used with

a morphological close operation, and the accuracy calculation of the resulting object

maps are listed in Table 4.6. The maximum achieved experimental accuracy from

Table 4.6 corresponds to the 3× 3 SE. This SE size is selected to process the “tree”

initial object map into the “tree” final object map. Figure 4.14 compares the “tree”

initial object map (Figure 4.14, left image) with the “tree” final object map after

morphological processing with a 3× 3 SE (Figure 4.14 right image). The “tree” final

object map is propogated forward to the finalize GIS layers step.

Table 4.6: Listing of the “tree” object map accura-
cies after morphological operations.

Structuring Element Tree Final Object Map Accuracy

2× 2 Square 0.860

3× 3 Plus 0.866

3× 3 Square 0.885

3× 3 Diamond 0.875

4× 4 Square 0.877

4× 4 Plus 0.859

4× 4 Diamond 0.852

5× 5 Square 0.858

5× 5 Ball 0.835

5× 5 Diamond 0.815

Section 3.5.1 describes the process used to operate on the “non-tree vegetation

(NDVI > 0.5)” initial object map to produe the “fields” final object map. The “non-

tree vegetation (NDVI > 0.5)” initial object map undergoes iterative morphological
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Tree Initial Object Map 2× 2 SE

3× 3 SE 4× 4 SE

Figure 4.13: The “tree” initial object map (upper left image) is operated on with
morphological close operations (left) and (bottom left/right) with the indicated
SE size in order to make the object map more visually appealing. In this sequence,
white pixels represent “trees” and black pixels represent “not trees”.
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Figure 4.14: A comparison between the “tree” initial object map (left image),
which is operated on with a morphological closed with a 3× 3 SE to produce the
“tree” final object map (right image). White pixels represent “trees” and black
pixels represent “not trees”.

operations with an n × n SE where n = 5, 6, . . . , 20 as demonstrated in Figure 4.15,

resulting in an intermediate “fields” object map. The “roadway” initial object map

(Figure 4.11, lower right image) is logically “deleted” (see Table 3.1) from the inter-

mediate “fields” object map to create the “fields” final object map as shown in the

right image of Figure 4.18. The “fields” final object map is propogated forward to the

finalize GIS layers step.

4.5.2 Step 2: The “Parking Areas” Final Object Map. Section 3.5.2 de-

scribes the process used in step 2 to process the “roadway” initial object map (Fig-

ure 4.11, lower right image) into the “parking areas” final object map. The “roadway”

initial object map undergoes iterative morphological open and close operations, with

an n × n SE where n = 2, 3, . . . , 10. The process is illustrated in Figure 4.17. The

“parking areas” final object map is propogated forward to the finalize GIS layers step.

4.5.3 Step 3: The “Major Buildings” Final Object Map. Section 3.5.3

describes the process used in step 3 to create the “major buildings” final object map.
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Creating the Intermediate “Fields” Object Map

“Non-tree Vegetation (NDVI > 0.5)” Initial 5× 5 SE. . . . . . 7× 7 SE. . .

. . . 9× 9 SE. . . . . . 11 × 11 SE. . . . . . 13 × 13 SE. . .

. . . 15 × 15 SE. . . . . . 17 × 17 SE. . . . . . 20× 20 SE, Intermediate “Fields”

Figure 4.15: Iterative morphological open/close operations are used on the “non-
tree vegetation (NDVI > 0.5)” initial object map (upper left image) with an n × n
SE where n = 5, 6, . . . , 20. Eight of the iterations are displayed. The result is the
intermediate “fields” object map (lower right image).
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Figure 4.16: This is a comparison between the “non-tree vegetation (NDVI >
0.5)” initial object map (left image) which is iteratively open/closed with mor-
phological as shown in Figure 4.15 to produce the “fields” final object map (right
image). White pixels represent “fields” and black pixels represent “not fields”.

The “rooftop” initial object map (Figure 4.11, lower left image) is processed into the

intermediate “buildings” object map. This is done by first constructing a negative

image mask (NIM) with logical “or” operations and the “initial vegetation (NDVI >

0.3)” and “roadway” initial object maps, and the “fields” and “parking areas” final

object maps. The NIM is morphologically closed with a 3×3 SE. The NIM construction

is illustrated in Figure 4.19. The logical inverse of the NIM in the lower-right image

of Figure 4.19 is logically “added” to the “rooftop” initial object map with a logical

“or” operation. The intermediate “buildings” object map is shown in the right image

of Figure 4.20.

The intermediate “buildings” object map is morphologically opened with a 7×7

SE, dilated with a 5× 5 SE, and then closed with a 3× 3 SE to produce the “major

buildings” final object map (Figure 4.21, right image). The “major buildings” final

object map is propogated forward to the finalize GIS layers step.
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Creating the “Parking Areas” Final Object Map

Initial Roadway Object Map . . . 2× 2. . . . . . 3× 3. . .

. . . 4× 4. . . . . . 5× 5. . . . . . 6× 6. . .

. . . 8× 8. . . . . . 9× 9. . . . . . 10 × 10: Initial Roadway Object Map

Figure 4.17: Iterative morphological open/close operations are used on the “road-
way” initial object map (upper left image) with an n × n SE where n = 2, 3, . . . , 10.
Eight of the iterations are displayed. The result is the “parking areas” final object
map (lower right image).
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Figure 4.18: This is a comparison between the “roadway” initial object map (left
image) which is iteratively open/closed with morphological as shown in Figure 4.17
to produce the “parking areas” final object map (right image). White pixels
represent “parking areas” and black pixels represent “not parking areas”.

4.5.4 Step 4: The “Best Known Good Roadway” Object Map. Section 3.5.4

describes the process used in step 4 to create the “best known good roadway” object

map. The “roadway” initial object map (Figure 4.22, left image) is operated on by

morphological open operations with SE sizes 2 × 2 and 3 × 3, and then by logically

“deleting” (see Table 3.1) the “parking areas” and “major buildings” final object

maps. The result is the “best known good roadway” object map (Figure 4.22, right

image). The “best known good roadway” object map is used as an input to the road

finding algorithm. The road finding algorithm adds possible road connections. For

this reason, it is important to ensure the “best known good roadway” object map

does not include excessive non-roadway segments, or the road finding algorithm may

add road connections that do not exist. Future improvements in the algorithm are

intended to remove this caveat.

4.5.5 Step 5: The “Road Network” Final Object Map. Section 3.5.5 de-

scribes the process used in step 5 to create the “road network” final object map. The

road finding algorithm uses the “best known good roadway” object map and a NIM
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Constructing the Buildings Negative Image Mask

1. Initial Vegetation (NDVI > 0.3) Object Map

2. “or” Fields Final Object Map 3. “or” Initial Roadway Object Map

4. “or” Parking Final Object Map 5. Close with 3× 3 SE Object Map

Figure 4.19: The negative image mask (NIM) is created by logically “adding” four
object maps with a logical “or” operation and then morphologically closing the NIM.
The logical inverse of this map is logically “added” to the “rooftop” initial object map
(Figure 4.11, lower left image) to create the intermediate “buildings” object map.
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Figure 4.20: The logical inverse of the negative image mask (NIM) in the lower
right image of Figure 4.19 is logically “added” to the “rooftop” initial object map
with a logical “or” operation (left image) followed by a morphological open with a
3×3 SE to produce the intermediate “buildings” object map (right image). White
pixels represent “buildings” and black pixels represent “not buildings areas”.
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Figure 4.21: The intermediate “building” object map (left image) is morpho-
logically opened with a 7 × 7 SE, dilated with a 5 × 5 SE, and then close with a
3× 3 SE to produce the “major buildings” final object map (right image). White
pixels represent “major buildings” and black pixels represent “not major buildings
areas”.
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Figure 4.22: The “roadway” initial object map (left image) is processed with
a morphological open with an SE up to 3 × 3, and then the “parking areas”
and “major buildings” final object maps are logically “deleted”. The result is
the “best known good roadway” object map (left image). The “best known good
roadway” object map is used by the road finding algorithm to locate possible road
connetions. White pixels are “known roadway” and the black pixels are “known
not roadway”.
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to make possible road connections. The NIM is constructed in the same manner as

in Figure 4.19 except with different object maps. Six object maps used to create the

road finding algorithm NIM: the “non-tree vegetation (NDVI > 0.3 and NDVI > 0.5)”

initial object maps, the “fields”, “parking areas”, “major buildings” final object maps,

and the intermediate “buildings” object map.

Once the NIM is constructed, the road finding algorithm from Figure 3.13 is

used to find possible road connections on the “best known good roadway” object map.

Each of the NIM layers is “pealed”, and simultaneously possible road connections are

created. This simultaneous process is shown in Figures 4.23 and 4.24. Figures 4.23 is

the NIM being “pealed”, and Figure 4.24 shows the possible road connections being

created. The road finding algorithm produces the “road network” final object map

(Figure 4.25, right image), which is analyzed for discrepancies in Figure 4.26. The

road network that results from allowing the road finding algorithm to have more

aggressive thresholds is considered in Figure 4.27. The “road network” final object

map is propogated forward to the finalize GIS layers step.

4.5.5.1 Road Network Discrepancies. Figure 4.26 shows the original

RGB model with roadways labeled, the false color image of the hyperspectral image,

the ground truth roadways map, and a list of discrepancies between them and the final

spatial roadway map. There are six notable discrepancies. When the “road network”

final object map is compared to “ground truth”, there are six discrepancies to make

note of.

1. These areas are actually parking lots and are legitimate roadways. They were

not part of the parking lot overlay because of their small size, and they are

attached to the primary roadway.

2. These two corner sections have significant segments of roadway next to them

with no vegetation between them. The algorithm connected these pieces. The

upper one encompasses driveways, and the lower one may be a small parking

area. Fine-tuning the algorithm with a Kalman filter or an embodiment of
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“Pealing” of Negative Image Mask Layers

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

Iteration 7 Iteration 8 Iteration 9

Figure 4.23: The road finding algorithm compares the number of negative image
mask (NIM) pixels with a binary “true” between the pairs of roadway pixels from
the “best known good roadway” object map to a NIM threshold when deciding on a
possible road connection (Figure 4.24).

4-33



The Iterative Road Finding Algorithm in Progress

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

Iteration 7 Iteration 8 Iteration 9

Figure 4.24: The NIM from Figure 4.23 is used in conjunction with the “best known
good roadway” object map to decide if a possible roadway connection should be drawn
between a pair of roadway pixels.
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Figure 4.25: The “best known good roadway” object map (left image) is pro-
cessed with the road finding algorithm (Figure 4.24) to produce the “road network”
final object map (right image).

the expected roadway paths would improve the probability of not attaching

wayward segments of asphalt if they lie off the primary path.

3. These two cul-de-sacs do not exist in the ground truth roadway, are completely

obscured in the hyperspectral false color image, and are only visible in the

original RGB template scene when the roadway labels are overlaid.

4. This is an errant roadway. The algorithm looks for possible road connections

between existing road segments, and prioritizes the connection if it lies under

trees. In this case, both of these conditions are met. An improvement to

the algorithm might be to consider how many road pixels actually exist, check

previous roadway maps for in-between pixels, and refuse the connection if it is

primarily under trees.

5. This segment of roadway may or not may exist, it is unclear. In the RGB

template scene, it is there. In the false color image, it may not be there. The

ground truth roadway indicates that a road segments may exist.
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Analyzing Roadway Discrepancies

False Color Scene

List of Discrepancies

Template RGB Scene, Labeled

Ground Truth Roadways

Figure 4.26: When compared to the original satellite image (upper left), the false
color composite of the hyperspectral scene (upper right), and the “ground truth”
roadway surface object map (lower left), there are six notable road network discrep-
ancies (lower right). 1. These are parking areas identified as road network. 2. The
road curves are not handled well. 3. There are two cul-de-sacs that are completely
occluded by tree foliage. 4. This roadway does not exist in the “ground truth”. 5. It
is undetermined if this roadway exists or not. It exists in the satellite image (upper
left), does not exist in the false color image (upper right), and may exist in the ground
truth roadway object map (lower left). 6. Road segment is missing.

4-36



Conservative Road Finding Aggressive Road Finding

Figure 4.27: A conservative and aggressive approach to find possible road con-
nections.

6. This missing segment is due to the fact that there does not exist a straight-line

path between the two end pieces. The algorithm looks for road segments in the

eight cardinal directions (every forty-five degrees of the circle). Improving the

algorithm to consider the entire circle would significantly improve the probability

of finding the connection.

4.5.5.2 Aggressive vs. Conservative Road Finding. The road abstrac-

tion algorithm has the option of an aggressive (Figure 4.27, left image) or conservative

(Figure 4.27, right image) approach to locating possible roads. Both approaches are

illustrated in Figure 4.27. The aggressive approach relaxes the NIM threshold shown

in Figure 3.13. The danger of the aggressive approach is that it results in the inclusion

of less significant “roadway” pixels (e.g. asphalt driveways) in the “road network”

final object map. Furthermore, the aggressive approach connects over small patches

of grass representing urban front or back lawns2.

2Linear processing may remove some of these artifacts
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4.5.6 Step 6: The “Non-Tree Vegetation” and the “Buildings” Final Object

Maps. Section 3.5.6 describes the process used in step 6 to create the “non-tree

vegetation (NDVI > 0.3)” and “buildings” final object maps. The reasons these two

maps are processed last are unique to each object map. The “non-tree vegetation

(NDVI > 0.3)” initial object map (Figure 4.28, left image) exhibits vegetation pixels

where roadways exist. The “road network” final object map is created in Step 5, and

it is logically “deleted” from the “non-tree vegetation” initial object map. The map is

then processed for visual appeal with a morphological close using a 2×2 SE to create

the “non-tree vegetation” final object map (Figure 4.28, right image). The “non-tree

vegetation” final object map is propogated forward to the finalize GIS layers step.

Due to the spectral similarity of the asphalt rooftop shingles and the asphalt

roadway surface, the “rooftop” initial object map contains a small number of road-

way pixels that persist into the intermediate “buildings” object map. Now that the

“road network” final object map is known, the roadway pixels are removed from the

intermediate “buildings” object map (Figure 4.29, left image) using a logical “dele-

tion” resulting in the “buildings” final object map (Figure 4.29, right image). The

“buildings” final object map is propogated forward to the finalize GIS layers step.

The spectral analysis process began with six initial object maps that processed

in six steps into the eight final object maps. The eight final object maps are used as

the basis to finalize eight GIS layers in the next step.

4.6 Finalizing the GIS Layers

The finalizing the GIS layers step is shown in Figures 3.15. This is a procedural

step similar to the create initial object maps because no analyis is accomplished. To

convert a final object map into a GIS layer, the objects in the object maps are “out-

lined” with a morphological remove operation. The object map is used as an object

transparency mask. By applying a color to the transparency mask and separately

varying the opacity of the object transparency mask and the shape outlines produce

a visually appealing GIS layer that can also be overlaid over the false color composite
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Figure 4.28: The “road network” final object map is logically “deleted” from
the “non-tree vegetation (NDVI > 0.3)” object map (left image), is processed with
a morphological close operation with 2 × 2 for visual appeal, and results in the
“non-tree vegetation” final object map (right image). White pixels are “non-tree
vegetation” and the black pixels are “not non-tree vegetation”.
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Figure 4.29: The “road network” final object map is logically “deleted” from
the intermediate “buildings” object map (left image) and results in the “buildings”
final object map (right image). White pixels are “buildings” and the black pixels
are “not buildings”.
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image of the hyperspectral scene for visual verification. This is done in Figures 4.30

through 4.36.

4.7 Summary

Figures 4.30 through 4.36 show the final GIS layers. Table 4.7 summarizes the

accuracies resulting from the spectral analyis and from the spectral followed by spatial

analysis. The GIS layers are compared to the “ground truth” information. The three

spatial maps that are both abstractions and have no corresponding spectral analysis

result (Parking Areas, Fields, and Major Buildings) had the highest accuracies. The

buildings, road network, tree, and grass GIS layers all improved significantly. The

vegetation GIS layer, however, is the only one that is reduced in accuracy.

Table 4.7: Listing of final GIS layer accuracies. The
table is ordered from high to low in the third column.

Spectral Spectral & Spatial Reference

Final GIS Layer Analysis Analysis Figure

Parking Areas 0.9935 Figure 4.37

Fields 0.9851 Figure 4.33

Major Buildings 0.9825 Figure 4.35

Buildings 0.7783 0.9668 Figure 4.34

Road Network 0.8673 0.9284 Figure 4.36

Vegetation 0.9949 0.9238 Figure 4.30

Tree 0.8201 0.8684 Figure 4.31

Non-Tree Vegetation 0.8159 0.8669 Figure 4.32

The accuracy for each of the object maps was expected not to vary significantly

from the spectral analysis process because of the significant morphological operations

used to improve the visual appeal of the object maps. The “vegetation”, “non-tree

vegetation”, and “tree” GIS layers are derived directly from SOM segmentations using
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only morphological operations and some logical operations, and they improved the

least.

The “buildings” map improved the most, which is a significant demonstration

of the negative image mask (NIM) concept used to determine the most likely building

locations. By using the inverse of the NIM with the “rooftop” initial object map,

the final GIS layer buildings accuracy is increased. Another contributor to increased

buildings accuracy is the removal of non-building pixels by logically “deleting” the

“road network” final object map.

Finally, the “vegetation” GIS layer in the lower right image of Figure 4.30

in contrast to the “vegetation” initial object map in the left image of Figure 4.12

shows significant deviations that were used to make the GIS layer more aesthetically

appealing through morphological operations. The knowledge contributed by the GIS

layer is not decreased despite the decrease in the pixel-level accuracy calculation of

Table 4.7. This decrease in accuracy highlights the challenges of relying on pixel-level

accuracy calculations when abstracted scene object knowledge is prioritized. The

“ground truth” labels for the hyperspectral scene do not contain abstract knoweldge

of the scene. For example, there is not label “parking areas”. The “ground truth”

contains the labels “asphalt roadway old” and “asphalt roadway new”.

Despite the challenges of using pixel-level accuracy calculations, tweaking road

network parameters, and adjusting the SE sizes to match the in-scene object sizes, the

results are compelling. The “tree” GIS layer in Figure 4.31 provides the “big picture”

locations of the tree locations and compares favorably to “ground truth”. The “non-

vegetation” GIS layer in Figure 4.32 clearly shows the road network, and locations

of the large contiguous grassy areas. The “fields” GIS layer in Figure 4.33 outlines

the two major contiguous grassy areas. The “buildings” GIS layer in Figure 4.34

correctly identifies the urban houses and major buildings, and the “major buildings”

GIS layer in Figure 4.35 correctly identifies the five major buildings. The road network

is completely described by the “road network” GIS layer in Figure 4.36. The road
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network is significantly tree-occluded in some cases, it is difficult to visually verify (see

Figure 4.36, upper left image) the existance of some road network segments. The road

finding algorithm overcame all of the tree occlusions to abstract the road network.

The four significant parking areas are correctly identified in the “parking areas” GIS

layer shown in Figure 4.37. In every case, the object shapes in the GIS layers match

the feature shapes in the false color composite of the hyperspectral image. Finally,

overlaying the road network, parking areas, major buildings, fields, all buildings,

and trees in Figure 4.38 demonstrates that the shapes from the individual layers “fit

together” in the same manner as in the original scene.

The GIS layer results have surpassed all expectation. Using a SOM to segment

an urban environment in [26] resulted in an overall 80% accuracy, and corresponds to

the “spectral-procesing-only” accuracies from Table 4.7. The value of morphological

spatial operations is demonstrated. The morphological operations are also robust

and operate in a similar manner to human perception. The morphological open

operation deletes stray pixels that a person ignores as “noise” or “scene clutter”,

and the morphological close operation clusters pixels that a person would mentally

group together. The average classification resulting from spectral analysis (84.3%, see

Table 4.5) increased after spatial processing to an average of 93.9% (see Table 4.7),

surpassing previous attempts by other authors.

4.8 Conclusions

Chapter IV covers a detailed step-by-step implementation of the process outlined

in Chapter III and Figure 3.1 to convert a synthetic hyperspectral image (Figure 3.2)

into eight GIS layers (Figures 4.30 through 4.36). It takes four steps to complete the

process. The first step is spectral analysis (Figure 3.3), creating the initial object

maps (Figure 3.10), spatial analysis (Figure 3.12), and finalizing the GIS layers (Fig-

ure 3.15). The pixel-level accuracy calculations in Table 4.7 show improvement and

significant improvement in all but one case through the use of spectral and spatial
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analysis in combination. The end product has, on average, an accuracy of 93.9%,

improving over previous attempts in abstracting scene content.
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False Color Image Ground Truth

Overlay GIS Vegetation Layer

Figure 4.30: Comparing the vegetation results.
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False Color Image Ground Truth

Overlay GIS Tree Layer

Figure 4.31: Comparing the tree results.
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False Color Image Ground Truth

Overlay GIS Non-Tree Vegetation Layer

Figure 4.32: Comparing the grass results.

4-46



False Color Image Ground Truth

Overlay GIS Fields Layer

Figure 4.33: Comparing the fields results.
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False Color Image Ground Truth

Overlay GIS Buildings Layer

Figure 4.34: Comparing the buildings results.
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False Color Image Ground Truth

Overlay GIS Major Buildings Layer

Figure 4.35: Comparing the major buildings results.
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False Color Image Ground Truth

Overlay GIS Road Network Layer

Figure 4.36: Comparing the road network results.
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False Color Image Ground Truth

Overlay GIS Parking Lots Layer

Figure 4.37: Comparing the parking lot results.
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Road Network → →add Parking Areas→

→add Major Buildings→ →add Fields→

→add All Buildings→ →add Trees→

Figure 4.38: Combining GIS layers demonstrates the fit of shapes.
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V. Future Work and Concluding Remarks

The results of using a Self-Organizing Map (SOM) to abstract GIS shape files

are excellent. The GIS layers are derived from a hyperspectral image using a

semi-automated predictable process that is resistant to human error. Minimal in-

terpretation of the hyperspectral scene is necessary because of the available spectral

information that was analyzed to generate the final results. Furthermore ground truth

information was not collected. The shape files follow the features of the hyperspec-

tral scene in two dimensions and provide an excellent abstraction of the hyperspectral

image information.

By using morphological operations to cluster pixels together and delete non-

clustered pixels, Geographic Information Systems layers were successively abstracted

from a hyperspectral image cube. No a-priori knowledge of the endmember spectra,

spectral databases, or any other information was brought to the analysis.

5.1 Supported Research

This thesis supports emerging technologies that rely heavily on quality GIS

layers being available. Abstracting features and identifying objects is foundational to

several in-progress research projects. Two these technologies are vehicular behavior

prediction and context-related automated target recognition.

5.1.1 Vehicular Target Behavior Prediction. The work in [31] is developing

a behavior prediction system that depends heavily on available roadway and building

GIS layers (see Figure 5.1). The GIS information used in [31] was obtained from US

municipal governments. Obtaining similar information for hostile territory or from a

hostile government may not be possible or advantageous. Therefore, an automated

way to extract these features, as accomplished in this thesis, is necessary.

5.1.2 Target Detection with Shadows in SAR. The work in [12] uses Synaptic

Aperture Radar (SAR) imagery to detect targets using shadows. The results currently

has a high false alarm rate associated with buildings and trees. Incorporating accurate
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Development of a Vehicle Behavior Prediction

Figure 5.1: This thesis work uses available GIS road network and building layers
to predict vehicle behavior. The GIS layers were obtained from US municipal govern-
ments, an option that may not be possible from hostile territories. This justifies the
approach used in this thesis, and the GIS layer results that can be obtained through
remote and passive surveillance.
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Target Detection with Shadows in Synthetic Aperture Radar Imagery

Figure 5.2: The green dots are positive detections, the yellow dot is a false detection
due to a building, and the red dots are false detections due to trees. Having the
tree and building coverage information would drive the false alarm rate of this SAR
detection algorithm to zero.

building and tree coverage drives the false alarm target detection rate to near zero

(see Figure 5.2). The techniques developed in this thesis provide building and tree

coverage information adequate to improve the process in [12].

5.2 Using the GIS Layers as Intelligence Products

Intelligence products need abstract, yet precise, information to be actionable

by commanders for battle planning and execution. Imagery is normally delivered

as-is, or is marked by intelligence analysts after some delay. The human-in-the-loop

intelligence product is still required to make final targeting decision, but knowledge

of roadways, fields, parking lots, major and minor buildings, and tree locations may

improve the ability to make better informed and faster decisions.
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5.3 Future Work

The first area to address is the SOM. In [7], the author creates a “Parameter-

Less SOM” (PLSOM) which removes the need to provide SOM training parameters.

Automating the segmentation of the SOM would futher reduce the probability of

human error. The tree segmentation process needs to be validated with real data and

improved. The building and roadway segmentation process depends on user input,

and the inclusion of a spectral database may alleviate this manual labor.

Second, setting SOM segmentation thresholds is another area of interest. By

setting an expectation for the object map with an urban environment layout ruleset,

the threshold might be automated. Another approach to SOM segmentation is to

perform a spatial edge detection on the SOM to reveal the neighborhood topology, use

region growing, or other spatial processing techniques to isolate the neighborhoods.

Third, applying the SOM as a filter for a different hyperspectral image needs

to be examined. The SOM should act as a “memory” for similar scenes. An online

spectral database created from in-scene spectra could be created that updates on a

continual basis. The database could be used after each scene segmentation and also

act as a “memory” for future segmentations.

Fourth, combining prior intelligence products, GIS layers, maps and existing

knowledge into the spatial analysis process may significantly improve the resulting

accuracy. Another interesting source of data to combin in the process is lidar data

because a hyperspectral imager flown on board an Unmanned Aerial System (UAS)

could easily be coupled with a lidar sensor.

Fifth, persistent surveillance can be simulated with the Digital Imaging and

Remote Sensing Image Generation (DIRSIG) [37] software by modifying the camera

viewing angle. This can be done by collecting several hyperspectral images over a

period time while simulating changing weather, atmospheric conditions, sun angle,

and the possible destruction of buildings or obstruction of roadways. The resulting
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images can be segmented, registered, and may demonstrate an increased “real-world”

use of the scene segmentation technology.

Sixth, the scene segmentation can be used in target detection. By simulating

moving targets with the DIRSIG software, one can attempt to locate and track specific

targets. The author in [34] uses anomaly detection with a SOM to discover rare

targets. After scene segmentation, another processing step in this thesis may be to

locate on of several vehicles present in-scene. One possible goal is to create a history

of vehicle tracks that can be consulted when an in-scene vehicle becomes a target of

interest in response to some stimulus (e.g. an in-scene explosion, possible from an

improvised explosive device).

Finally, the road finding algorithm, which is accomplished with only spatial

processing techniques, can be improved. Using a Kalman Filter, embedding road

connection information, identifying junctions and intersections, and exploring the

spatial analysis realm in combination with the negative image mask concept may

improve road the abstraction.

5.4 Concluding Remarks

Military warfare at the turn of the millenia is focused on urban combat. As the

Air Force augments its capabilities with intelligence, surveillance, and reconnaissance

systems geared toward the urban environment, technologies that significantly increase

the effectiveness of human labor and battlespace awareness, while taking advantage of

existing technologies, are in demand. The technology developed in this thesis exceeds

these priorities by providing an on-demand, real-time method of gauging the area

of operations. Scene segmentation and the resulting GIS shape files is an enabling

technology that fills a critical need for high-quality digital information of the threat

environment.
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